1,143 research outputs found

    Cache County Water Demand/Supply Model

    Get PDF
    This report descibes a municipal water demand forecasting model for use in areas of mixed rural and urban housing types. A series of residential demand functions were derived which forecast water demand based on the ype and density of housing and season. Micro sampling techniques were used to correlate water use data and explanatory variable data for low, medium, and high density housing. The demand functions were incorporated into a geographic information system (GIS) platform cosisting of a desk-top mapping program, MapInfo, coupled with a user interface program written in Visual Basic. The GIS-based model analyzes water demand at the census block level and aggregates the block level demands to a total city residential water demand. Averaged values of explanatory variables for each block are derived using the spacial relations of the block to map objects which have as attributes the various explanatory variable data. The model was applied to each of 23 community water systems in Cache County, Utah. The model projects future demands to the year 2020 based upon the individual community growth rate estimates produced by the Utah state demographers. In addition to projecting future demands, the model includes a supply allocation module which matches each systme\u27s demand with individual water supply sources

    Dynamic Inlet Distortion Prediction with a Combined Computational Fluid Dynamics and Distortion Synthesis Approach

    Get PDF
    A procedure has been developed for predicting peak dynamic inlet distortion. This procedure combines Computational Fluid Dynamics (CFD) and distortion synthesis analysis to obtain a prediction of peak dynamic distortion intensity and the associated instantaneous total pressure pattern. A prediction of the steady state total pressure pattern at the Aerodynamic Interface Plane is first obtained using an appropriate CFD flow solver. A corresponding inlet turbulence pattern is obtained from the CFD solution via a correlation linking root mean square (RMS) inlet turbulence to a formulation of several CFD parameters representative of flow turbulence intensity. This correlation was derived using flight data obtained from the NASA High Alpha Research Vehicle flight test program and several CFD solutions at conditions matching the flight test data. A distortion synthesis analysis is then performed on the predicted steady state total pressure and RMS turbulence patterns to yield a predicted value of dynamic distortion intensity and the associated instantaneous total pressure pattern

    Lithium Phthalocyanine: A Probe for Electron Paramagnetic Resonance Oximetry in Viable Biological Systems.

    Get PDF
    Lithium phthalocyanine (LiPc) is a prototype of another generation of synthetic, metallic-organic, paramagnetic crystallites that appear very useful for in vitro and in vivo electron paramagnetic resonance oximetry. The peak-to-peak line width of the electron paramagnetic resonance spectrum of LiPc is a linear function of the partial pressure of oxygen (pO2); this linear relation is independent of the medium surrounding the LiPc. It has an extremely exchange-narrowed spectrum (peak-to-peak line width = 14 mG in the absence of O2). Physicochemically LiPc is very stable; its response to pO2 does not change with conditions and environments (e.g., pH, temperature, redox conditions) likely to occur in viable biological systems. These characteristics provide the sensitivity, accuracy, and range to measure physiologically and pathologically pertinent O2 tensions (0.1-50 mmHg; 1 mmHg = 133 Pa). The application of LiPc in biological systems is demonstrated in measurements of pO2 in vivo in the heart, brain, and kidney of rats

    Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots

    Get PDF
    Several widespread changes in the ecology of old-growth tropical forests have recently been documented for the late twentieth century, in particular an increase in stem turnover (pan-tropical), and an increase in above-ground biomass (neotropical). Whether these changes are synchronous and whether changes in growth are also occurring is not known. We analysed stand-level changes within 50 long-term. monitoring plots from across South America spanning 1971-2002. We show that: (i) basal area (BA: sum of the cross-sectional areas of all trees in a plot) increased significantly over time (by 0.10 +/- 0.04 m(2) ha(-1) yr(-1), mean +/- 95% CI); as did both (ii) stand-level BA growth rates (sum of the increments of BA of surviving trees and BA of new trees that recruited into a plot); and (iii) stand-level BA mortality rates (sum of the cross-sectional areas of all trees that died in a plot). Similar patterns were observed on a per-stem basis: (i) stem density (number of stems per hectare; 1 hectare is 10(4) m(2)) increased significantly over time (0.94 +/- 0.63 stems ha(-1) yr(-1)); as did both (ii) stem recruitment rates; and (iii) stem mortality rates. In relative terms, the pools of BA and stem density increased by 0.38 +/- 0.15% and 0.18 +/- 0.12% yr(-1), respectively. The fluxes into and out of these pools-stand-level BA growth, stand-level BA mortality, stem recruitment and stem mortality rates-increased, in relative terms, by an order of magnitude more. The gain terms (BA growth, stem recruitment) consistently exceeded the loss terms (BA loss, stem mortality) throughout the period, suggesting that whatever process is driving these changes was already acting before the plot network was established. Large long-term increases in stand-level BA growth and simultaneous increases in stand BA and stem density imply a continent-wide increase in resource availability which is increasing net primary productivity and altering forest dynamics. Continent-wide changes in incoming solar radiation, and increases in atmospheric concentrations of CO2 and air temperatures may have increased resource supply over recent decades, thus causing accelerated growth and increased dynamism across the world's largest tract of tropical forest

    Fingerprinting the impacts of global change on tropical forests

    Get PDF
    Recent observations of widespread changes in mature tropical forests such as increasing tree growth, recruitment and mortality rates and increasing above-ground biomass suggest that 'global change' agents may be causing predictable changes in tropical forests. However, consensus over both the robustness of these changes and the environmental drivers that may be causing them is yet to emerge. This paper focuses on the second part of this debate. We review (i) the evidence that the physical, chemical and biological environment that tropical trees grow in has been altered over recent decades across large areas of the tropics, and (ii) the theoretical, experimental and observational evidence regarding the most likely effects of each of these changes on tropical forests. Ten potential widespread drivers of environmental change were identified: temperature, precipitation, solar radiation, climatic extremes (including El Niño Southern Oscillation events), atmospheric CO2 concentrations, nutrient deposition, O3/acid depositions, hunting, land-use change and increasing liana numbers. We note that each of these environmental changes is expected to leave a unique 'fingerprint' in tropical forests, as drivers directly force different processes, have different distributions in space and time and may affect some forests more than others (e.g. depending on soil fertility). Thus, in the third part of the paper we present testable a priori predictions of forest responses to assist ecologists in attributing particular changes in forests to particular causes across multiple datasets. Finally, we discuss how these drivers may change in the future and the possible consequences for tropical forests

    Measurement of the local Jahn-Teller distortion in LaMnO_3.006

    Full text link
    The atomic pair distribution function (PDF) of stoichiometric LaMnO_3 has been measured. This has been fit with a structural model to extract the local Jahn-Teller distortion for an ideal Mn(3+)O_6 octahedron. These results are compared to Rietveld refinements of the same data which give the average structure. Since the local structure is being measured in the PDF there is no assumption of long-range orbital order and the real, local, Jahn-Teller distortion is measured directly. We find good agreement both with published crystallographic results and our own Rietveld refinements suggesting that in an accurately stoichiometric material there is long range orbital order as expected. The local Jahn-Teller distortion has 2 short, 2 medium and 2 long bonds.Comment: 5 pages, 3 postscript figures, minor change

    CO2 Enhancement of Forest Productivity Constrained by Limited Nitrogen Availability

    Get PDF
    Stimulation of terrestrial productivity by rising CO~2~ concentration is projected to reduce the airborne fraction of anthropogenic CO~2~ emissions; coupled climate-carbon (C) cycle models, including those used in the IPCC Fourth Assessment Report (AR4), are sensitive to this negative feedback on atmospheric CO~2~^1^. The representation of the so-called CO~2~ fertilization effect in the 11 models used in AR4 and subsequent models^2,3^ was broadly consistent with experimental evidence from four free-air CO~2~ enrichment (FACE) experiments, which indicated that net primary productivity (NPP) of forests was increased by 23 +/- 2% in response to atmospheric CO~2~ enrichment to 550 ppm^4^. Substantial uncertainty remains, however, because of the expectation that feedbacks through the nitrogen (N) cycle will reduce the CO~2~ stimulation of NPP^5,6^; these feedbacks were not included in the AR4 models and heretofore have not been confirmed by experiments in forests^7^. Here, we provide new evidence from a FACE experiment in a deciduous Liquidambar styraciflua (sweetgum) forest stand in Tennessee, USA, that N limitation has significantly reduced the stimulation of NPP by elevated atmospheric CO~2~ concentration (eCO~2~). Isotopic evidence and N budget analysis support the premise that N availability in this forest ecosystem has been declining over time, and declining faster in eCO~2~. Model analyses and evidence from leaf- and stand-level observations provide mechanistic evidence that declining N availability constrained the tree response to eCO2. These results provide a strong rationale and process understanding for incorporating N limitation and N feedback effects in ecosystem and global models used in climate change assessments

    Plant root distributions and nitrogen uptake predicted by a hypothesis of optimal root foraging

    Get PDF
    CO2-enrichment experiments consistently show that rooting depth increases when trees are grown at elevated CO2 (eCO2), leading in some experiments to increased capture of available soil nitrogen (N) from deeper soil. However, the link between N uptake an

    Global mangrove root production, its controls and roles in the blue carbon budget of mangroves

    Get PDF
    Mangroves are among the most carbon-dense ecosystems worldwide. Most of the carbon in mangroves is found belowground, and root production might be an important control of carbon accumulation, but has been rarely quantified and understood at the global scale. Here, we determined the global mangrove root production rate and its controls using a systematic review and a recently formalised, spatially explicit mangrove typology framework based on geomorphological settings. We found that global mangrove root production averaged ~770 ± 202 g of dry biomass m-2 year-1 globally, which is much higher than previously reported and close to the root production of the most productive tropical forests. Geomorphological settings exerted marked control over root production together with air temperature and precipitation (r2 ≈ 30%, p &lt; .001). Our review shows that individual global changes (e.g. warming, eutrophication, drought) have antagonist effects on root production, but they have rarely been studied in combination. Based on this newly established root production rate, root-derived carbon might account for most of the total carbon buried in mangroves, and 19 Tg C lost in mangroves each year (e.g. as CO2). Inclusion of root production measurements in understudied geomorphological settings (i.e. deltas), regions (Indonesia, South America and Africa) and soil depth (&gt;40 cm), as well as the creation of a mangrove root trait database will push forward our understanding of the global mangrove carbon cycle for now and the future. Overall, this review presents a comprehensive analysis of root production in mangroves, and highlights the central role of root production in the global mangrove carbon budget. </p
    • …
    corecore