1,880 research outputs found

    Knowing Values and Public Inspection

    Get PDF
    We present a basic dynamic epistemic logic of "knowing the value". Analogous to public announcement in standard DEL, we study "public inspection", a new dynamic operator which updates the agents' knowledge about the values of constants. We provide a sound and strongly complete axiomatization for the single and multi-agent case, making use of the well-known Armstrong axioms for dependencies in databases

    Parameters' domain in three flavour neutrino oscillations

    Get PDF
    We consider analytically the domain of the three mixing angles Θij\Theta_{ij} and the CP phase δ\delta for three flavour neutrino oscillations both in vacuum and matter. Similarly to the quark sector, it is necessary and sufficient to let all the mixing angles Θ12,Θ13,Θ23\Theta_{12},\Theta_{13},\Theta_{23} and δ\delta be in the range and 0δ<2π0 \leq \delta < 2 \pi, respectively. To exploit the full range of δ\delta will be important in future when more precise fits are possible, even without CP violation measurements. With the above assumption on the angles we can restrict ourselves to the natural order of masses m1<m2<m3m_1<m_2<m_3. Considerations of the mass schemes with some negative δm2\delta m^2's, though for some reasons useful, are not necessary from the point of view of neutrino oscillation parametrization and cause double counting only. These conclusions are independent of matter effects.Comment: references added, to appear in PL

    2-(2,4-Dinitro­benz­yl)pyridinium 2-hy­droxy-3,5-dinitro­benzoate

    Get PDF
    In the structure of the title salt, C12H10N3O4 +·C7H3N2O7 −, the cations and the anions are linked by a single N+—H⋯Ocarbox­yl hydrogen bond, the discrete cation–anion unit having no inter­molecular associations other than weak cation–anion aromatic ring π–π inter­actions [ring centroid separation = 3.7320 (14) Å] and a number of weak inter-unit aromatic C—H⋯O contacts. An intramolecular C—H⋯O hydrox­yl–carboxyl hydrogen bond occurs in the anion

    Polarization of Tau Leptons Produced in Quasielastic Neutrino--Nucleon Scattering

    Get PDF
    A numerical analysis of the polarization vector of tau leptons produced through quasielastic neutrino and antineutrino interactions with free nucleons is given with two models for vector electromagnetic form factors of proton and neutron. The impact of G parity violating axial and vector second-class currents is investigated by applying a simple heuristic model for the induced scalar and tensor form factors.Comment: Thesis of a talk given at the 8th Scientific Conference (SCYSS-04), Dubna, Russia, 2 - 6 Feb 2004. 11 pages, 6 figures; added references, figures and discussion; conclusions unchange

    A diagrammatic treatment of neutrino oscillations

    Full text link
    We present a covariant wave-packet approach to neutrino flavor transitions in vacuum. The approach is based on the technique of macroscopic Feynman diagrams describing the lepton number violating processes of production and absorption of virtual massive neutrinos at the macroscopically separated space-time regions ("source" and "detector"). Accordingly, the flavor transitions are a result of interference of the diagrams with neutrinos of different masses in the intermediate states. The statistically averaged probability of the process is representable as a multidimensional integral of the product of the factors which describe the differential flux density of massless neutrinos from the source, differential cross section of the neutrino interaction with the detector and a dimensionless factor responsible for the flavor transition. The conditions are analyzed under which the last factor can be treated as the flavor transition probability in the usual quantum-mechanical sense.Comment: 27 pages,7 figures, iopart class. Includes minor corrections made in proofs. References update

    Berry Phase in Neutrino Oscillations

    Full text link
    We study the Berry phase in neutrino oscillations for both Dirac and Majorana neutrinos. In order to have a Berry phase, the neutrino oscillations must occur in a varying medium, the neutrino-background interactions must depend on at least two independent densities, and also there must be CP violation if the neutrino interactions with matter are mediated only by the standard model W and Z boson exchanges which implies that there must be at least three generations of neutrinos. The CP violating Majorana phases do not play a role in generating a Berry phase. We show that a natural way to satisfy the conditions for the generation of a Berry phase is to have sterile neutrinos with active-sterile neutrino mixing, in which case at least two active and one sterile neutrinos are required. If there are additional new CP violating flavor changing interactions, it is also possible to have a non-zero Berry phase with just two generations.Comment: RevTex 16 pages, no figures, new discussions about sterile neutrino added,typos corrected and errors in references correcte
    corecore