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Abstract

We consider analytically the domain of the three mixing anglgsand the CP phaskfor three flavour neutrino oscillations
both in vacuum and matter. Similarly to the quark sector, it is necessary and sufficient to let all the mixinglangéess, ©23
ands be in the rang€O0, %) and 0< § < 2, respectively. To exploit the full range 8fwill be important in future when more
precise fits are possible, even without CP violation measurements. With the above assumption on the angles we can restric
ourselves to the natural order of massgs< m, < m3. Considerations of the mass schemes with some negati¢s, though
for some reasons useful, are not necessary from the point of view of neutrino oscillation parametrization and cause double
counting only. These conclusions are independent of matter effe@801 Published by Elsevier Science B.V.
Open access under CC BY license.

1. Introduction

Three flavour neutrino oscillations are considered as a reliable mechanism to explain atmospheric and solar
neutrino anomalies. The neutrino flavour eigenstaies: (v., v, v;) are assumed to be combinations of mass
eigenstates; = (v1, vz, v3)

3
Vo = Z Ugivi. (1)
i=1

Various parametrizations of the mixing matiix are possible for Dirac and Majorana neutrinos. All of them
use three mixing angle®;; (ij = 12,13,23) and one (Dirac) or three (Majorana) CP phases. As the neutrino
oscillation experiments are not sensitive to Majorana CP phases the same mixingimasrix the quark sector
[1] is adopted (see, e.g., [2] for discussion of various parametrizations)

i

€12€13 §12€13 s13€
U= | —s12c23— c12523513¢'%  c12c23 — s12s23513¢°  s23c13 |, 2
512523 — C12¢23513¢'®  —c12523 — s12023513¢"° 23013

wherec(s);; = cogsin@;;.
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The mixing angles?;; can be defined to lie in the first quadrant by appropriately adjusting the neutrino and
charged lepton phases, analogously to the quark sector [3]. To exhaust the full parameter space the £P phase
must be taken in the range0s < 2. There is only one important difference between quark and neutrino sectors:
alignment of absolute neutrino masses is unknown and, among others, normal and inverse neutrino mass hierarch
schemes are considered. It is also true that neutrino oscillations in vacuum will never be able to distinguish these
two schemes. The argument is that in vacuum, without CP violation measurements, the oscillation probability
depends only on sﬁ((SmU 75 ), and the sign oBm , which decide about the mass scheme, is unmeasurable.

Neutrino oscillations in matter would only give the chance to measure the s@nfhWe would like to clarify

the notion of usingSmf. signs for neutrinos mixing parametrization [4]. We find the full domain of the three
mixing angles®;; ands phase in the mixing matri&/ in matter. It appears that parameter space in the matter case
is exactly the same as in vacuum

oga,-,g%, 0< 5 <27 3)

In addition, in matter, it is not necessary to consider mass schemes with different mass arran@mj%:eats

:t|5m,~j2|. With the full range of parameters, it is enough to include only the “canonical” order of masses
(m1 < m2 < m3). All other mass schemes with negati/e? are equivalent to that withm3, > 0 and §n%, > 0

and a different region in the parameter space of Eq. (3). Finally we argue that ex@aniitg full range will be
important in future experiments and not necessarily in connection with the explicit measurements of CP violation
effects.

In Section 2, in a simple analysis we find the domain of parameters for neutrino oscillation in vacuum. Even if
the range Eq. (3) is well known from the quark sector, we discuss it as it is a suitable introduction to understand the
more complicated case of neutrino oscillations in matter. This is presented in Section 3. Finally, the conclusions
are gathered in Section 4.

2. Parameter spacefor neutrino oscillationsin vacuum

The vacuum neutrino flavour oscillation probability for an initially produegavith an energye converted into
detectedy after traveling a distanck is given by

Py vy =8ap — 4y RAGSIN Agp — Yzeaﬂy, 4)
a=b
where
Ry =R WSE], (5)
Y =8Im[W_27] sinAz1sin A1 sinAsg, (6)
L [km]

Aap = 1.278m?, [eV] ()

E [GeV]’
and

Smi,=mi—mp, Wi =UaaUppUlUp,-

«,

We can see that the mixing matrix elemebtg, enter the oscillation probability bwgg tensors which are
invariant under the phase transformation

Uye — e 1y U},Ce""". (8)
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Freedom of this transformation can be used to show that all mixing a@g,lexiginally belongingto the interval
(0, 2) can be mapped onto the first quadrént € (0, 5). As the real and the imaginary parts of the phase factor

¢'? are allowed to change sign, the appropriate |nterva<B fisr(0, 2r7).

Now we show in a way which will be useful in the more complicated case of neutrino oscillations in matter,
that in fact the domain from Eq. (3) covers the full parameter space of possible neutrino transitions. First of all,
from unitarity of theU matrix follows that aIIR ¢ tensors can be expressed by squares of moduli of/theatrix
elements

Rip = —(|UW|Z|UW,|2 — |Uaal?|Uab|* = |Upal*Ups|?). (9)
fora 2B #y,a+#b,and

Rgg = |Uaa|2|U(xb|2v 01/3 = |Uaa| |Uﬂa| s (20)
otherwise.

The|U.q|2fora=1,2,3and Uys|2fora = pu, t depend only on sine and cosine square®gfand do not feel
the transformations among the four quadrants. Q@ly,|'s for « = u, T anda = 1, 2 depend linearly on sines
and cosines ob;; angles, namely

|Usal® = Kaa £ S, (11)
whereK, are still functions of co?s@,-j and sirf ®;;, but

S = %F cos?, 12)

F =sin20155sin 20,35inO13. (13)

Exactly the same factar appears in the Jarlskog invariant (Eq. (6)) [5]

1
J=Im[w}2] = ZrFco§0135|n8 (14)

Only theF factor is sensitive to the change of sign when the anglgsire mapped from the full domain, 2)
to the final rang€0, %) (n;; =0,...,3)

T T T
F <@1z +n12—; O13+ n13—; O3+ n23—> = (—)"2M"3 £ (n13) F (O12; O13; O23), (15)
2 2 2/ lo<o<3
where
| +1, forni3=0,1,
fn13) = { -1, forniz=2,3.

In order to compensate the possible change of signs in Eq. (15) other factors in Egs. (6), (14) and (12) must have
the freedom to change sign. The only possible choices are the CPyaad¢he combination in Eq. (6) defined
as

A =SinA21SiNA31SiNnA3o. (16)
There are two possibilities.

e If § € (0, 27r) then a change of sign by sirin Eq. (14) and co& in Eqg. (12) compensates the sign in Eq. (15).
In this case the order of masses can be kept canonigat, mo < m3.

e If § € (0, ) then co$ is able to compensate the sign in Eq. (12), butsin0, soA must be used in the CP
violating Y quantity (Eq. (6)). In such a case, schemes withk 0 ([123], [231], [312]) are distinguishable from
schemes witA < 0 ([132], [321], [213]) in oscillation appearance experiments (see Fig. 1 for notation).
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3
3

2 2 2
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2 2 2 A<O
3 [132] 6m21>0 6m32<0 8m31>0 <
1

Fig. 1. Possible configurations of neutrino masses. The first one is called canonical. The first two ([123], [312]) are usually discussed in
literature. All schemes are completely equivalent since marking neutrinos with numbers has no physical meaning. It is not important how a
neutrino with number{” couples to thex flavour. It is only meaningful how neutrinos of different masses couple te fitevour.

We see that the chose®; ands angles given in Eq. (3) exhaust the full parameter space. We can bind the CP
violating phase to the smaller range

0<8< ) (17)

and in the same time distinguish the neutrino mass schemesAwvithO (cyclic mass permutations from the
canonical case) from\ < 0 cases (noncyclic mass permutations of the canonical scheme). It is impossible to
disentangle schemes inside these two groups. Therefore, an approach with the canonical order of masses is clear
from the point of view of neutrino oscillation parametrization: a point (region) in the parameter space of Eq. (3)
determines the scheme of masses and the mixture of the weak states in an unambiguously way. We will turn back
to the interpretation O(fml.zj signs in the next section.

Presently, as statistical errors are large any subleading effects in neutrino oscillations are neglected and
experimental data for neutrino (disappearance) oscillations are fitted by the formula where only sine and/or cosine
squares of the;; mixing angles appear. Therefore, we do not have to explore the full parameter space in Eq. (3).
However, if the future precision improves and subleading effects are measured then it may be necessary to do it.
Now we show an example where taking into accounttpbase is important even if CP violation is not measured.

Let us consider atmospherig — v, disappearance probability in vacuum

Pup=1—4[(K2K i1 — S?) Si? Aoy + |U,u31? (K 1 SIP Azy — K2 Sir? Agp) |
— 4S{(Ku2 — K1) SI? A21 + U3 (Sin? Asy — sin® Asp) ), (18)

whereK,; (i =1, 2) are defined in Eq. (11). We can see that there is a part proportio§alttch exists only
if Ap1#0<¢ As1# Asp. In Fig. 2 P, as function ofL/E is given for§m3, = $m2,, = 2.5 x 1074 eV?,

sol —
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Fig. 2. The effect of the CP-violating phase in the disappearapce v, transition (Eq. (18)).

dm3, = dm2y, = 2.5 x 1073 eV2, @23 = O1p = /2 and @3 = 0.2.§ is taken to be 0 ane. The difference
betweens = 0 ands = = cases can be easily seen. This difference diminishes with decréasiglgTaking into
account some new results where exploration of large valuémé}‘| (even up to a scale oSfmgtm) is discussed
seriously [6-9] this effect should be keep in mind when a precise, global analysis of oscillation data is undertaken,
especially with incoming neutrino factory physics. Let us note, that érty0 is used presently. Usually it is
assumed, that in the CP conservation case it is allowed tostak® and 0< ®;; < /2. Surprisingly it is not

true. If CP is conserved, then the discussion given above implies that mapping the full ran@g 6 27 onto

0< ©;; < m/2requires the term cdsin Eq. (12) to have two discrete valugd..

3. Parameter spacefor neutrino oscillationsin matter

The probabilityP;Z%vﬁ of neutrino oscillations in matter of densid, is given by the vacuum formula (Eq. (4))
with modifiedU,,, Az andJ [10]

P, =8up — 4y RW]SI? AL, — Y™ Y oy, (19)
a>b
where

b

Weg“? = Um U U U, (20)
Ny A :

Ul = D, Vaa 5~ Uu,[()»2 m2) U Uqe + (A2 —m2) U, Uqp], Witha #b #c, (21)

22 —AZ eV]°L [km
A;"b=1.27( o~ p) [EVIPL [km (22)

E [GeV] ’
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™ = 8J™sinAY, SinAY, sin A%, (23)
P R Y
D D3

x{N1Nz = N2A (32 = m)|Uaal? = N1A (33 = m3)|Ueal?
+ AUV (33 = m3) (63 = md) + (63— mB) (33— m3) — (5 - md) (B3 - md)]}.  (@4)
Na = (37 = m3) (2 —m?) = A[(A7 = m}) | Uecl® + (A5 — m?) | Uap|]. (25)
DZ = N2 + A2|UeaP[(32 = m2)?|Uecl? + (A2 — m?)?|Uap|?]. (26)

)»5 denote the effective mass squares of neutrinos in matter and follow from diagonalization of an effective
Hamiltonian

1 [(mi 0 o A 0O
M=o 0 mj 0 +U*<o 0 o)u . (27)
El\o o m3 0 00

mq (a =1, 2, 3) are neutrino masses aAd= 2+/2 EG ¢ N,. Using the Cardano formula we get

1 1 :
A%:—a—;——p(COS(P—I—\/éSIn(b) k%:—a—;—gp(COS(])—\/éSIn(ﬁ),
2_ %2, 2

A3=—7 +3pC0S$, (28)

where
1 1 9 27

p=+/a5—3a, $=3 arcco{—; <a§ - zaaz+ an)}, (29)

and

ao=—mimgm3 — A[mim3|U.2|” + mim3|Ues|® + mom3|Ue1]?].
a1 = mbm3 +m2m3 +mim3 + A[m3(1— |Uer|?) + m3(1 — |Ue2l?) +m3(1— |Ues|?)],
a2=—(m§~|—m%~|—m§+A). (30)

. ; 5. 25
Now we can proceed as in the vacuum case and conB@grvﬁ (®i,9, Smij) in the full range of parameters.

Yab

Similarly to the vacuum case the real partsi® f depend or1U§';|2. These subsequently depend on vacuum

mixing matrix elements

Uil = Uaal $220 (02— )RS + (62— m?) R

D2
a
2
A_ 2032 — 22U U2+ (A2 — 2
+ D2|ert| ()‘a mb) [Uec|“|Uqc] ()\ m ) |Ueb| [Uas|
a

+2(2 = mf) (k2 — mB) Rl | (31)

We can see that the mixing angles appear in the squared mb’ggl? and inside theR tensors (Egs. (9), (10))
which also depend orUyc|2. So, as in the vacuum case, when the full dom@ir2z) is mapped ontd0, 7 /2),
nontrivial signs appear only in the factor (Eq. (13)). Thus again, the change of signs can be compensated by
coss in Eq. (12).
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In the CP violating part (Eq. (23)) the vacuum mixing angles are found in the squared mogij |8fand J
(see Eq. (24)). Again, only the factor inJ (Egs. (13), (14)) changes sign if tlig; angles are reduced to the first
quadrant. I8 € (0, 27) then sirs term in Eq. (14) is able to compensate the change of sigh ifhe mixing angles
are also present in the effective neutrino masse€Eq. (28)). However, onlyU.; |2 elements appear (Eq. (30))
and angles can be reduced to the first quadrant without chahging this way we have proved that the domains
of parameters for neutrino oscillations in matter and vacuum are the same (Eg. (3)).

Now we would like to answer the question, whether introducing permutations of masses to the canonical
scheme [123] (see Fig. 1) is able to reduce the parameter space béth tords in Eq. (3). Such an approach to
the ®;; angles was common before the “dark side” era [11]. Statements have also appeated(thatr) can be
shrunk to half of this region when negative signsmfiz/. are taken into account.

Let us start our considerations from tfg; angles. In the case of two flavour neutrino oscillations in vacuum

L

the transition probability depends only on%}}@sinz[szﬁ]. Then it is possible to limit the range of mixing

angles to the first octant. The transition probability in matter depends on the combination [12]

A 2
(W —Cos 29) . (32)

The relative sign betweetn? and cos 26s important, so two possibilities are considered
T T
sm>>0 and 0<O < 5 or 5m2=:l:|8m2| and 0< O < 7

In the case of three flavour neutrino oscillations it is impossible to limit the rangg;aingles in this way, even
in vacuum. Transition probabilities (Eq. (4)) depend not only on the produ%&}sjn:os2 ©;; but also on siﬁ@,:,
and cod O separatelyt Since it is impossible to shrink the range of the mixing anggsin the case of vacuum
oscillations, the same will hold true for the matter case. In spite of that, various schemes (Fig. 1) are considered.
Let us show that in this way the same angles are used twice wkeBQ < 7.

Neutrino oscillation formulae (Eqgs. (28)—(30)) are symmetric under permutation of neutrinos. Traditionally some
scalar matrix1- consj is removed from the effective Hamiltonian (Eq. (27)) giving the same physical predictions.
For example, ifH,, is written in the form

1 00 0O O 0

M2=<0 1 o>m§+ 0 ém3 0 |, (33)
001 0 0 omd

then the matrixi - m% can be absorbed giving a common phase factor for all three neutrino flavours. In such a case

we diagonalize the hamiltoniaH, where

m% — 0, m% — (Sm%l, m% — (Sm%l. (34)

The newq; parameters derived from Eq. (30) are not symmetric under permutations of the masses anymore, they
depend om?’'s, namely,
ag = —Adm3,:8m3,|Ue1|?,
_ s, 2 ¢ 2 2 2 2 2
a1 =38m5,;8mg, + A[dm5,(1— |Ue2|?) + 8m5(1 — |Uesl?)].
az = —Smgl — Smgl —A. (35)

1 This statement is general. In the approximation with one dominatingscale some transition probabilities depend only o 2.
For example, the short-baseline reactor disappearance probahjity,, =1 — sir? O13 sin? Ao3. However, this approximation seems to be
questionable, even for present neutrino data [6] and quite probably a full theoretical framework without neglectiﬁgz%mhrmld be used
in future.
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Let us now calculate the eigenvalues for the case of negm'gle i=12, i.e.,Smgi = —|8m§i |. We have
ao(—|8m%;) = Alsm54|[sm5y||Ueal?,
ar(—[om5[) = —[om3,|[8mZ,] + A[[omE] (1 - Ueal?) — [mB| (1 - 1Uesl?)],
az(—[8m3;]) = = ([sm3| — [sm3y| + A). (36)

Using these new parameters(—|8m3i|) different )‘1'2 eigenvalues are obtained. Are these rve\(v—|8m§l.|)
eigenvalues equal to the “canonical’ calculated at some other point of the parameter space of Eq. (3)? To show
that they are, let us take the scheme [312]. This scheme (as any other in Fig. 1) is completely equivalent to the
canonical one [123]. We have only to change the names of particles32 1— 2, 3— 1 or more precisely
replacelU,1 — U¢2, Up2 — U,3, Uez —> U1, 8m%3—> Smgl, (Sm%l — 8m§2, 8m§3 — Smgl.

In the scheme [312], as previously we subtr;aétmass from theV? matrix. As nowms is the lightest mass,
we have to diagonalizeH,, with the following replacements

2

mi— 0, m%—) 2

mz — —|8m§1|. (37)

The parameters, which we get are exactly the same as given by Eq. (36). Similarly we can check that any
replacemenﬁm — 8m in the canonical parameteds ([123)) is equivalent to the others given by one of the

six schemes in F|g. 1.In thrs way we have proved that changing the sr@nqzjorh the canonical [123] eigenvalues
is equivalent to evaluatiné’s at some other point of the parameter space Eq. (3), schematically

2E(=[8mZ |) ~ 22 (1ijk)). (38)

We can see that using schemes with various permutations of masses does not confine the domain of the paramet
space®;; and causes double counting only. However, we can find a practical reason for introchdeists. We
have just shown that using various schemes is equivalent to using the [123] scheme with different valyes of
angles in the parameter space. That is why we can reverse the situation by fixing angles to the same physica
situation, i.e.,®12 can be connected wrtJ&(Sml2 (oscillation of solar neutrinosy»3 with :l:8m23 (oscillation of
atmospheric neutrinos) artgh 3 with reactor neutrino oscillations.

Finally, let us consider thé phase in the case of matter neutrino oscillations. Can we bound it to the smaller
range (Eq. (17)) as in the vacuum case? There is a very elegant relationship between the universal CP-violating
parameterd”™ andJ in matter and in vacuum [13]

" (35 =23) (03 = 1) (A5 = 32) = J (3 — m3) (m3 — m3) (m3 — m3). (39)

From this relation follows that the signs lezj andSAl.zj are correlated. Izﬁml?j changes sign, the same happens

to (SAZ?. We conclude that for neutrino oscillations in matter we have exactly the same situation as in the vacuum
case. The basic domain &fs (0, 27r) and it can be restricted {®, =) and then the schemes with>0and A <0
are distinguishable.

4. Conclusions

We have proved in an analytical way that the ranges of the mixing amgleand the CP-violating phase
are the same for three flavour neutrino oscillations in vacuum and in mattee (0, 7 /2), § € (0, 27). It means
that probabilities for three flavour neutrino oscillations can be described by points (more reliably by regions) in
this parameters’ domain without using the signsﬁmfj (Smizj > 0,7 > j). Contrary to the case of two neutrino

oscillations in matter, the possibility of two signs for eaStzhr2 does not restrict further the domain of thg;
angles. Even though the srgns&uﬁz 's are not needed, they are useful. Taking into account the srgm?pfvve
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can fix angle®;; to a given scale oamf The range of thé CP phase can be confinedte (0, ) but then, only
sets of schemes with cyclie\(> 0) and odd A > 0) neutrino mass permutations are distinguishable to each other.
A simple example has been given tldatan be important even for disappearance neutrino oscillation experiments.
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