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Abstract

We consider analytically the domain of the three mixing anglesΘij and the CP phaseδ for three flavour neutrino oscillations
both in vacuum and matter. Similarly to the quark sector, it is necessary and sufficient to let all the mixing anglesΘ12,Θ13,Θ23
andδ be in the range〈0, π2 〉 and 0� δ < 2π , respectively. To exploit the full range ofδ will be important in future when more
precise fits are possible, even without CP violation measurements. With the above assumption on the angles we can restrict
ourselves to the natural order of massesm1<m2<m3. Considerations of the mass schemes with some negativeδm2’s, though
for some reasons useful, are not necessary from the point of view of neutrino oscillation parametrization and cause double
counting only. These conclusions are independent of matter effects. 2001 Published by Elsevier Science B.V.

1. Introduction

Three flavour neutrino oscillations are considered as a reliable mechanism to explain atmospheric and solar
neutrino anomalies. The neutrino flavour eigenstatesνα = (νe, νµ, ντ ) are assumed to be combinations of mass
eigenstatesνi = (ν1, ν2, ν3)

(1)να =
3∑
i=1

Uαiνi .

Various parametrizations of the mixing matrixU are possible for Dirac and Majorana neutrinos. All of them
use three mixing anglesΘij (ij = 12,13,23) and one (Dirac) or three (Majorana) CP phases. As the neutrino
oscillation experiments are not sensitive to Majorana CP phases the same mixing matrixU as in the quark sector
[1] is adopted (see, e.g., [2] for discussion of various parametrizations)

(2)U =

 c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


 ,

wherec(s)ij ≡ cos(sin)Θij .
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The mixing anglesΘij can be defined to lie in the first quadrant by appropriately adjusting the neutrino and
charged lepton phases, analogously to the quark sector [3]. To exhaust the full parameter space the CP phaseδ

must be taken in the range 0� δ � 2π . There is only one important difference between quark and neutrino sectors:
alignment of absolute neutrino masses is unknown and, among others, normal and inverse neutrino mass hierarchy
schemes are considered. It is also true that neutrino oscillations in vacuum will never be able to distinguish these
two schemes. The argument is that in vacuum, without CP violation measurements, the oscillation probability
depends only on sin2

(
δm2
ij
L

4E

)
, and the sign ofδm2

ij , which decide about the mass scheme, is unmeasurable.

Neutrino oscillations in matter would only give the chance to measure the sign ofδm2
ij . We would like to clarify

the notion of usingδm2
ij signs for neutrinos mixing parametrization [4]. We find the full domain of the three

mixing anglesΘij andδ phase in the mixing matrixU in matter. It appears that parameter space in the matter case
is exactly the same as in vacuum

(3)0 �Θij � π
2
, 0 � δ < 2π.

In addition, in matter, it is not necessary to consider mass schemes with different mass arrangementsδm2
ij =

±|δmij 2|. With the full range of parameters, it is enough to include only the “canonical” order of masses
(m1<m2<m3). All other mass schemes with negativeδm2

ij are equivalent to that withδm2
21> 0 and δm2

32> 0
and a different region in the parameter space of Eq. (3). Finally we argue that exploringδ in its full range will be
important in future experiments and not necessarily in connection with the explicit measurements of CP violation
effects.

In Section 2, in a simple analysis we find the domain of parameters for neutrino oscillation in vacuum. Even if
the range Eq. (3) is well known from the quark sector, we discuss it as it is a suitable introduction to understand the
more complicated case of neutrino oscillations in matter. This is presented in Section 3. Finally, the conclusions
are gathered in Section 4.

2. Parameter space for neutrino oscillations in vacuum

The vacuum neutrino flavour oscillation probability for an initially producedνα with an energyE converted into
detectedνβ after traveling a distanceL is given by

(4)Pνα→νβ = δαβ − 4
∑
a>b

Rabαβ sin2∆ab − Y
∑
γ

εαβγ ,

where

(5)Rabαβ = Re
[
Wabαβ

]
,

(6)Y = 8 Im
[
W12
eµ

]
sin∆21sin∆31sin∆32,

(7)∆ab = 1.27δm2
ab [eV] L [km]

E [GeV] ,
and

δm2
ab =m2

a −m2
b, Wabαβ =UαaUβbU∗

αbU
∗
βa.

We can see that the mixing matrix elementsUαa enter the oscillation probability byWabαβ tensors which are
invariant under the phase transformation

(8)Uγc → e−iδγ Uγ ceiηc .
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Freedom of this transformation can be used to show that all mixing anglesΘij originally belonging to the interval
〈0,2π) can be mapped onto the first quadrantΘij ∈ 〈0, π2 〉. As the real and the imaginary parts of the phase factor
eiδ are allowed to change sign, the appropriate interval forδ is 〈0,2π).

Now we show in a way which will be useful in the more complicated case of neutrino oscillations in matter,
that in fact the domain from Eq. (3) covers the full parameter space of possible neutrino transitions. First of all,
from unitarity of theU matrix follows that allRabαβ tensors can be expressed by squares of moduli of theU matrix
elements

(9)Rabαβ = 1

2

(|Uγa|2|Uγb|2 − |Uαa|2|Uαb|2 − |Uβa|2|Uβb|2
)
,

for α = β = γ , a = b, and

(10)Rabαα = |Uαa|2|Uαb|2, Raaαβ = |Uαa|2|Uβa|2,
otherwise.

The|Uea|2 for a = 1,2,3 and |Uα3|2 for α = µ,τ depend only on sine and cosine squares ofΘij and do not feel
the transformations among the four quadrants. Only|Uαa|2’s for α = µ,τ anda = 1,2 depend linearly on sines
and cosines ofΘij angles, namely

(11)|Uαa|2 =Kαa ± S,
whereKαa are still functions of cos2Θij and sin2Θij , but

(12)S = 1

2
F cosδ,

(13)F = sin 2Θ12sin 2Θ23sinΘ13.

Exactly the same factorF appears in the Jarlskog invariant (Eq. (6)) [5]

(14)J ≡ Im
[
W12
eµ

]= 1

4
F cos2Θ13sinδ.

Only theF factor is sensitive to the change of sign when the anglesΘij are mapped from the full domain〈0,2π)
to the final range〈0, π2 〉 (nij = 0, . . . ,3)

(15)F

(
Θ12 + n12

π

2
;Θ13 + n13

π

2
;Θ23 + n23

π

2

)∣∣∣∣
0�Θij� π

2

= (−)n12+n23f (n13)F (Θ12;Θ13;Θ23),

where

f (n13)=
{+1, for n13 = 0,1,

−1, for n13 = 2,3.

In order to compensate the possible change of signs in Eq. (15) other factors in Eqs. (6), (14) and (12) must have
the freedom to change sign. The only possible choices are the CP phaseδ and the combination∆ in Eq. (6) defined
as

(16)∆= sin∆21sin∆31sin∆32.

There are two possibilities.

• If δ ∈ 〈0,2π) then a change of sign by sinδ in Eq. (14) and cosδ in Eq. (12) compensates the sign in Eq. (15).
In this case the order of masses can be kept canonical,m1<m2<m3.

• If δ ∈ 〈0,π) then cosδ is able to compensate the sign in Eq. (12), but sinδ > 0, so∆ must be used in the CP
violatingY quantity (Eq. (6)). In such a case, schemes with∆> 0 ([123], [231], [312]) are distinguishable from
schemes with∆< 0 ([132], [321], [213]) in oscillation appearance experiments (see Fig. 1 for notation).
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Fig. 1. Possible configurations of neutrino masses. The first one is called canonical. The first two ([123], [312]) are usually discussed in
literature. All schemes are completely equivalent since marking neutrinos with numbers has no physical meaning. It is not important how a
neutrino with number “i” couples to theα flavour. It is only meaningful how neutrinos of different masses couple to theα flavour.

We see that the chosenΘij andδ angles given in Eq. (3) exhaust the full parameter space. We can bind the CP
violating phase to the smaller range

(17)(0 � δ � π)

and in the same time distinguish the neutrino mass schemes with∆ > 0 (cyclic mass permutations from the
canonical case) from∆ < 0 cases (noncyclic mass permutations of the canonical scheme). It is impossible to
disentangle schemes inside these two groups. Therefore, an approach with the canonical order of masses is clearer
from the point of view of neutrino oscillation parametrization: a point (region) in the parameter space of Eq. (3)
determines the scheme of masses and the mixture of the weak states in an unambiguously way. We will turn back
to the interpretation ofδm2

ij signs in the next section.
Presently, as statistical errors are large any subleading effects in neutrino oscillations are neglected and

experimental data for neutrino (disappearance) oscillations are fitted by the formula where only sine and/or cosine
squares of theΘij mixing angles appear. Therefore, we do not have to explore the full parameter space in Eq. (3).
However, if the future precision improves and subleading effects are measured then it may be necessary to do it.
Now we show an example where taking into account theδ phase is important even if CP violation is not measured.
Let us consider atmosphericνµ → νµ disappearance probability in vacuum

Pµµ = 1− 4
[(
Kµ2Kµ1 − S2)sin2∆21 + |Uµ3|2

(
Kµ1 sin2∆31 −Kµ2 sin2∆32

)]
(18)− 4S

{
(Kµ2 −Kµ1)sin2∆21 + |Uµ3|2

(
sin2∆31 − sin2∆32

)}
,

whereKµi (i = 1,2) are defined in Eq. (11). We can see that there is a part proportional toS which exists only
if ∆21 = 0 ⇔ ∆31 = ∆32. In Fig. 2 Pµµ as function ofL/E is given for δm2

21 ≡ δm2
sol = 2.5 × 10−4 eV2,
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Fig. 2. The effect of the CP-violating phase in the disappearanceνµ → νµ transition (Eq. (18)).

δm2
31 ≡ δm2

atm = 2.5 × 10−3 eV2, Θ23 = Θ12 = π/2 and Θ13 = 0.2. δ is taken to be 0 andπ . The difference
betweenδ = 0 andδ = π cases can be easily seen. This difference diminishes with decreasingδm2

sol. Taking into
account some new results where exploration of large values ofδm2

sol (even up to a scale ofδm2
atm) is discussed

seriously [6–9] this effect should be keep in mind when a precise, global analysis of oscillation data is undertaken,
especially with incoming neutrino factory physics. Let us note, that onlyδ = 0 is used presently. Usually it is
assumed, that in the CP conservation case it is allowed to takeδ = 0 and 0� Θij � π/2. Surprisingly it is not
true. If CP is conserved, then the discussion given above implies that mapping the full range 0� Θij < 2π onto
0 �Θij � π/2 requires the term cosδ in Eq. (12) to have two discrete values±1.

3. Parameter space for neutrino oscillations in matter

The probabilityPmνα→νβ of neutrino oscillations in matter of densityNe is given by the vacuum formula (Eq. (4))
with modifiedUαa,∆ab andJ [10]

(19)Pmνα→νβ = δαβ − 4
∑
a>b

Re
[
W
(m)ab
αβ

]
sin2∆mab − Ym

∑
γ

εαβγ ,

where

(20)W
(m)ab
αβ =UmαaUmβbUm∗

αb U
m∗
βa ,

(21)Um
αa = Na

Da
Uαa + A

Da
Uea

[(
λ2
a −m2

b

)
U∗
ecUαc + (

λ2
a −m2

c

)
U∗
ebUαb

]
, with a = b = c,

(22)∆mab = 1.27
(λ2
a − λ2

b) [eV]2L [km]
E [GeV] ,
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(23)Ym = 8Jm sin∆m21sin∆m31sin∆m32,

(24)

Jm = J (λ
2
1 −m2

2)(λ
2
1 −m2

3)(λ
2
2 −m2

1)(λ
2
2 −m2

2)

D2
1D

2
2

×
{
N1N2 −N2A

(
λ2

1 −m2
2

)|Ue1|2 −N1A
(
λ2

2 −m2
1

)|Ue2|2
+A2|Ue1|2|Ue2|2

[(
λ2

2 −m2
1

)(
λ2

1 −m2
3

)+ (
λ2

2 −m2
3

)(
λ2

1 −m2
2

)− (
λ2

2 −m2
3

)(
λ2

1 −m2
3

)]}
,

(25)Na = (
λ2
a −m2

b

)(
λ2
a −m2

c

)−A[(λ2
a −m2

b

)|Uec|2 + (
λ2
a −m2

c

)|Ueb|2],
(26)D2

a =N2
a +A2|Uea|2

[(
λ2
a −m2

b

)2|Uec|2 + (
λ2
a −m2

c

)2|Ueb|2].
λ2
a denote the effective mass squares of neutrinos in matter and follow from diagonalization of an effective

Hamiltonian

(27)Hν = 1

2E




m2

1 0 0
0 m2

2 0
0 0 m2

3


+U†

(
A 0 0
0 0 0
0 0 0

)
U


 .

ma (a = 1,2,3) are neutrino masses andA= 2
√

2EGFNe . Using the Cardano formula we get

λ2
1 = −a2

3
− 1

3
p
(
cosφ + √

3sinφ
)
, λ2

2 = −a2

3
− 1

3
p
(
cosφ − √

3sinφ
)
,

(28)λ2
3 = −a2

3
+ 2

3
p cosφ,

where

(29)p=
√
a2

2 − 3a1, φ=1

3
arccos

[
− 1

p3

(
a3

2 − 9

2
a1a2 + 27

2
a0

)]
,

and

a0 = −m2
1m

2
2m

2
3 −A[m2

1m
2
3|Ue2|2 +m2

1m
2
2|Ue3|2 +m2

2m
2
3|Ue1|2

]
,

a1 =m2
2m

2
3 +m2

1m
2
2 +m2

1m
2
3 +A[m2

1

(
1− |Ue1|2

)+m2
2

(
1− |Ue2|2

)+m2
3

(
1− |Ue3|2

)]
,

(30)a2 = −(m2
1 +m2

2 +m2
3 +A).

Now we can proceed as in the vacuum case and considerPmνα→νβ (Θij , δ, δm
2
ij ) in the full range of parameters.

Similarly to the vacuum case the real parts ofW(m)abαβ depend on|Umδc|2. These subsequently depend on vacuum
mixing matrix elements

∣∣Umαa∣∣2 = N
2
a

D2
a

|Uαa|2 + 2
ANa

D2
a

{(
λ2
a −m2

b

)
Raceα + (

λ2
a −m2

c

)
Rabeα

}

(31)

+ A
2

D2
a

|Ueα|2
{(
λ2
a −m2

b

)2|Uec|2|Uαc|2 + (
λ2
a −m2

c

)2|Ueb|2|Uαb|2
+ 2

(
λ2
a −m2

b

)(
λ2
a −m2

b

)
Rbceα

}
.

We can see that the mixing angles appear in the squared moduli|Uγc|2 and inside theR tensors (Eqs. (9), (10))
which also depend on|Uγc|2. So, as in the vacuum case, when the full domain〈0,2π) is mapped onto〈0,π/2〉,
nontrivial signs appear only in theF factor (Eq. (13)). Thus again, the change of signs can be compensated by
cosδ in Eq. (12).
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In the CP violating part (Eq. (23)) the vacuum mixing angles are found in the squared moduli of|Uei |2 andJ
(see Eq. (24)). Again, only theF factor inJ (Eqs. (13), (14)) changes sign if theΘij angles are reduced to the first
quadrant. Ifδ ∈ 〈0,2π) then sinδ term in Eq. (14) is able to compensate the change of sign inF . The mixing angles
are also present in the effective neutrino massesλa (Eq. (28)). However, only|Uei |2 elements appear (Eq. (30))
and angles can be reduced to the first quadrant without changingλa . In this way we have proved that the domains
of parameters for neutrino oscillations in matter and vacuum are the same (Eq. (3)).

Now we would like to answer the question, whether introducing permutations of masses to the canonical
scheme [123] (see Fig. 1) is able to reduce the parameter space both forΘij andδ in Eq. (3). Such an approach to
theΘij angles was common before the “dark side” era [11]. Statements have also appeared thatδ ∈ (0,2π〉 can be
shrunk to half of this region when negative signs ofδm2

ij are taken into account.
Let us start our considerations from theΘij angles. In the case of two flavour neutrino oscillations in vacuum

the transition probability depends only on sin2 2Θ sin2[δm2 L
4E

]
. Then it is possible to limit the range of mixing

angles to the first octant. The transition probability in matter depends on the combination [12]

(32)

(
A

δm2 − cos2Θ

)2

.

The relative sign betweenδm2 and cos2Θis important, so two possibilities are considered

δm2> 0 and 0<Θ <
π

2
or δm2 = ±∣∣δm2

∣∣ and 0<Θ <
π

4
.

In the case of three flavour neutrino oscillations it is impossible to limit the range ofΘij angles in this way, even
in vacuum. Transition probabilities (Eq. (4)) depend not only on the product sin2Θij cos2Θij but also on sin2Θij
and cos2Θij separately.1 Since it is impossible to shrink the range of the mixing anglesΘij in the case of vacuum
oscillations, the same will hold true for the matter case. In spite of that, various schemes (Fig. 1) are considered.
Let us show that in this way the same angles are used twice when 0<Θij <

π
2 .

Neutrino oscillation formulae (Eqs. (28)–(30)) are symmetric under permutation of neutrinos. Traditionally some
scalar matrix(1 · const) is removed from the effective Hamiltonian (Eq. (27)) giving the same physical predictions.
For example, ifHν is written in the form

(33)M2 =
(1 0 0

0 1 0
0 0 1

)
m2

1 +

0 0 0

0 δm2
21 0

0 0 δm2
3


 ,

then the matrix1 ·m2
1 can be absorbed giving a common phase factor for all three neutrino flavours. In such a case

we diagonalize the hamiltonianHν where

(34)m2
1 → 0, m2

2 → δm2
21, m2

3 → δm2
31.

The newai parameters derived from Eq. (30) are not symmetric under permutations of the masses anymore, they
depend onδm2

ij ’s, namely,

a0 = −Aδm2
21δm

2
31|Ue1|2,

a1 = δm2
21δm

2
31 +A[δm2

21

(
1− |Ue2|2

)+ δm2
31

(
1− |Ue3|2

)]
,

(35)a2 = −δm2
21 − δm2

31 −A.

1 This statement is general. In the approximation with one dominatingδm2 scale some transition probabilities depend only on sin2 2Θij .

For example, the short-baseline reactor disappearance probabilityPνe→νe = 1− sin2Θ13sin2∆23. However, this approximation seems to be
questionable, even for present neutrino data [6] and quite probably a full theoretical framework without neglecting someδm2 should be used
in future.
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Let us now calculate the eigenvalues for the case of negativeδm2
3i , i = 1,2, i.e.,δm2

3i = −|δm2
3i |. We have

a0
(−∣∣δm2

3i

∣∣)=A∣∣δm2
21

∣∣∣∣δm2
31

∣∣|Ue1|2,
a1
(−∣∣δm2

3i

∣∣)= −∣∣δm2
21

∣∣∣∣δm2
31

∣∣+A[∣∣δm2
21

∣∣(1− |Ue2|2
)− ∣∣δm2

31

∣∣(1− |Ue3|2
)]
,

(36)a2
(−∣∣δm2

3i

∣∣)= −(∣∣δm2
21

∣∣− ∣∣δm2
31

∣∣+A).
Using these new parametersai(−|δm2

3i|) different λ2
i eigenvalues are obtained. Are these newλi(−|δm2

3i|)
eigenvalues equal to the “canonical”λi calculated at some other point of the parameter space of Eq. (3)? To show
that they are, let us take the scheme [312]. This scheme (as any other in Fig. 1) is completely equivalent to the
canonical one [123]. We have only to change the names of particles 2→ 3, 1→ 2, 3→ 1 or more precisely
replaceUe1 → Ue2, Ue2 → Ue3, Ue3 → Ue1, δm2

23 → δm2
31, δm

2
21 → δm2

32, δm
2
13 → δm2

21.
In the scheme [312], as previously we subtractm2

1 mass from theM2 matrix. As nowm3 is the lightest mass,
we have to diagonalizedHν with the following replacements

(37)m2
1 → 0, m2

2 → ∣∣δm2
21

∣∣, m2
3 → −∣∣δm2

31

∣∣.
The parametersai which we get are exactly the same as given by Eq. (36). Similarly we can check that any

replacementδm2
ij → −δm2

ij in the canonical parametersai ([123]) is equivalent to the others given by one of the

six schemes in Fig. 1. In this way we have proved that changing the signs ofδm2
ij in the canonical [123] eigenvalues

is equivalent to evaluatingλ2
i ’s at some other point of the parameter space Eq. (3), schematically

(38)λ2
i

(−∣∣δm2
ij

∣∣)∼ λ2
i

([ijk]).
We can see that using schemes with various permutations of masses does not confine the domain of the parameter

spaceΘij and causes double counting only. However, we can find a practical reason for introducing±δm2’s. We
have just shown that using various schemes is equivalent to using the [123] scheme with different values ofΘij
angles in the parameter space. That is why we can reverse the situation by fixing angles to the same physical
situation, i.e.,Θ12 can be connected with±δm2

12 (oscillation of solar neutrinos),Θ23 with ±δm2
23 (oscillation of

atmospheric neutrinos) andΘ13 with reactor neutrino oscillations.
Finally, let us consider theδ phase in the case of matter neutrino oscillations. Can we bound it to the smaller

range (Eq. (17)) as in the vacuum case? There is a very elegant relationship between the universal CP-violating
parametersJm andJ in matter and in vacuum [13]

(39)Jm
(
λ2

2 − λ2
1

)(
λ2

3 − λ2
1

)(
λ2

3 − λ2
2

)= J (m2
2 −m2

1

)(
m2

3 −m2
1

)(
m2

3 −m2
2

)
.

From this relation follows that the signs ofδm2
ij andδλ2

ij are correlated. Ifδm2
ij changes sign, the same happens

to δλ2
ij . We conclude that for neutrino oscillations in matter we have exactly the same situation as in the vacuum

case. The basic domain ofδ is 〈0,2π) and it can be restricted to〈0,π〉 and then the schemes with∆> 0 and∆< 0
are distinguishable.

4. Conclusions

We have proved in an analytical way that the ranges of the mixing anglesΘij and the CP-violating phaseδ
are the same for three flavour neutrino oscillations in vacuum and in matter:Θij ∈ 〈0,π/2〉, δ ∈ 〈0,2π). It means
that probabilities for three flavour neutrino oscillations can be described by points (more reliably by regions) in
this parameters’ domain without using the signs ofδm2

ij (δm2
ij > 0, i > j ). Contrary to the case of two neutrino

oscillations in matter, the possibility of two signs for eachδm2
ij does not restrict further the domain of theΘij

angles. Even though the signs ofδm2
ij ’s are not needed, they are useful. Taking into account the signs ofδm2

ij we
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can fix anglesΘij to a given scale ofδm2
ij . The range of theδ CP phase can be confined toδ ∈ 〈0,π) but then, only

sets of schemes with cyclic (∆> 0) and odd (∆> 0) neutrino mass permutations are distinguishable to each other.
A simple example has been given thatδ can be important even for disappearance neutrino oscillation experiments.
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