112,828 research outputs found

    A solvable model for excitonic complexes in one dimension

    Full text link
    It is known experimentally that stable few-body clusters containing negatively-charged electrons (e) and positively-charged holes (h) can exist in low-dimensional semiconductor nanostructures. In addition to the familiar exciton (e+h), three-body 'charged excitons' (2e+h and 2h+e) have also been observed. Much less is known about the properties of such charged excitons since three-body problems are generally very difficult to solve, even numerically. Here we introduce a simple model, which can be considered as an extended Calogero model, to calculate analytically the energy spectra for both a charged exciton and a neutral exciton in a one-dimensional nanostructure, such as a finite-length quantum wire. Apart from its physical motivation, the model is of mathematical interest in that it can be related to the Heun (or Heine) equation and, as shown explicitly, highly accurate, closed form solutions can be obtained.Comment: 14 pages, 3 figures, To appear in J. Math. Phy

    On the Conjectures Regarding the 4-Point Atiyah Determinant

    Full text link
    For the case of 4 points in Euclidean space, we present a computer aided proof of Conjectures II and III made by Atiyah and Sutcliffe regarding Atiyah's determinant along with an elegant factorization of the square of the imaginary part of Atiyah's determinant

    A non-Markovian optical signature for detecting entanglement in coupled excitonic qubits

    Full text link
    We identify an optical signature for detecting entanglement in experimental nanostructure systems comprising coupled excitonic qubits. This signature owes its strength to non-Markovian dynamical effects in the second-order temporal coherence function of the emitted radiation. We calculate autocorrelation and cross-correlation functions for both selective and collective light excitation, and prove that the coherence properties of the emitted light do indeed carry information about the entanglement of the initial multi-qubit state. We also show that this signature can survive in the presence of a noisy environment.Comment: 4 pages, 4 color figures. Minor changes. Accepted version to be published in Europhysics Letter

    Simulation of Thematic Mapper performance as a function of sensor scanning parameters

    Get PDF
    The investigation and results of the Thematic Mapper Instrument Performance Study are described. The Thematic Mapper is the advanced multispectral scanner initially planned for the Earth Observation Satellite and now planned for LANDSAT D. The use of existing digital airborne scanner data obtained with the Modular Multispectral Scanner (M2S) at Bendix provided an opportunity to simulate the effects of variation of design parameters of the Thematic Mapper. Analysis and processing of this data on the Bendix Multispectral Data Analysis System were used to empirically determine categorization performance on data generated with variations of the sampling period and scan overlap parameters of the Thematic Mapper. The Bendix M2S data, with a 2.5 milliradian instantaneous field of view and a spatial resolution (pixel size) of 10-m from 13,000 ft altitude, allowed a direct simulation of Thematic Mapper data with a 30-m resolution. The flight data chosen were obtained on 30 June 1973 over agricultural test sites in Indiana

    Ultrafast optical signature of quantum superpositions in a nanostructure

    Full text link
    We propose an unambiguous signature for detecting quantum superposition states in a nanostructure, based on current ultrafast spectroscopy techniques. The reliable generation of such superposition states via Hadamard-like quantum gates is crucial for implementing solid-state based quantum information schemes. The signature originates from a remarkably strong photon antibunching effect which is enhanced by non-Markovian dynamics.Comment: 4 pages, 2 figures. Published in Phys. Rev. B (Rapid Communications

    From old wars to new wars and global terrorism

    Get PDF
    Even before 9/11 there were claims that the nature of war had changed fundamentally. The 9/11 attacks created an urgent need to understand contemporary wars and their relationship to older conventional and terrorist wars, both of which exhibit remarkable regularities. The frequency-intensity distribution of fatalities in "old wars", 1816-1980, is a power-law with exponent 1.80. Global terrorist attacks, 1968-present, also follow a power-law with exponent 1.71 for G7 countries and 2.5 for non-G7 countries. Here we analyze two ongoing, high-profile wars on opposite sides of the globe - Colombia and Iraq. Our analysis uses our own unique dataset for killings and injuries in Colombia, plus publicly available data for civilians killed in Iraq. We show strong evidence for power-law behavior within each war. Despite substantial differences in contexts and data coverage, the power-law coefficients for both wars are tending toward 2.5, which is a value characteristic of non-G7 terrorism as opposed to old wars. We propose a plausible yet analytically-solvable model of modern insurgent warfare, which can explain these observations.Comment: For more information, please contact [email protected] or [email protected]

    Direct equivalence between quantum phase transition phenomena in radiation-matter and magnetic systems: scaling of entanglement

    Full text link
    We show that the quantum phase transition arising in a standard radiation-matter model (Dicke model) belongs to the same universality class as the infinitely-coordinated, transverse field XY model. The effective qubit-qubit exchange interaction is shown to be proportional to the square of the qubit-radiation coupling. A universal finite-size scaling is derived for the corresponding two-qubit entanglement (concurrence) and a size-consistent effective Hamiltonian is proposed for the qubit subsystem.Comment: 4 pages, 3 figures. Minor changes. Published versio

    Theory of adhesion: role of surface roughness

    Full text link
    We discuss how surface roughness influence the adhesion between elastic solids. We introduce a Tabor number which depends on the length scale or magnification, and which gives information about the nature of the adhesion at different length scales. We consider two limiting cases relevant for (a) elastically hard solids with weak adhesive interaction (DMT-limit) and (b) elastically soft solids or strong adhesive interaction (JKR-limit). For the former cases we study the nature of the adhesion using different adhesive force laws (FunF\sim u^{-n}, n=1.54n=1.5-4, where uu is the wall-wall separation). In general, adhesion may switch from DMT-like at short length scales to JKR-like at large (macroscopic) length scale. We compare the theory predictions to the results of exact numerical simulations and find good agreement between theory and the simulation results

    Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact

    Get PDF
    We report a molecular dynamics study of the contact between a rigid solid with a randomly rough surface and an elastic block with a flat surface. We study the contact area and the interfacial separation from small contact (low load) to full contact (high load). For small load the contact area varies linearly with the load and the interfacial separation depends logarithmically on the load. For high load the contact area approaches to the nominal contact area (i.e., complete contact), and the interfacial separation approaches to zero. The present results may be very important for soft solids, e.g., rubber, or for very smooth surfaces, where complete contact can be reached at moderate high loads without plastic deformation of the solids.Comment: 4 pages,5 figure
    corecore