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Molecular Dynamics Study of Contact Mechanics: Contact Area
and Interfacial Separation from Small to Full Contact
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We report a molecular dynamics study of the contact between a rigid solid with a randomly rough
surface and an elastic block with a flat surface. We study the contact area and the interfacial separation
from small contact (low load) to full contact (high load). For small load the contact area varies linearly
with the load and the interfacial separation depends logarithmically on the load. For high load the contact
area approaches the nominal contact area (i.e., complete contact), and the interfacial separation ap-
proaches zero. The present results may be very important for soft solids, e.g., rubber, or for very smooth
surfaces, where complete contact can be reached at moderate high loads without plastic deformation of the

solids.
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It is very difficult to prepare surfaces which are really
flat. Even on the most polished surfaces, hills and valleys
are present which are large compared with the atomic-size.
Usually, if two solids are placed in contact, the upper
surface will be supported on the summits of the irregu-
larities, and large surface areas will be separated by dis-
tances which are great compared with the molecular range
of action [1-4]. The separation u(x) between the surfaces
will vary in a nearly random way with the lateral coordi-
nates X = (x, y) in the apparent contact area. When the
applied squeezing pressure increases, the contact area A
will increase and the average surface separation i = (u(x))
will decrease, but in most situations it is not possible to
squeeze the solids into perfect contact corresponding to
i = 0. Understanding the area of real contact, and the
interfacial separation between two solids is essential to
friction, adhesion, sealing and many other important ap-
plications [5-8].

Most studies of contact mechanics have been focused on
a small load where the contact area depends linearly on the
load [9-15]. However, for soft solids, such as rubber or
gelatin, or for smooth surfaces, nearly full contact may
occur at the interface; therefore, it is of great interest to
study how the contact area, the interfacial surface separa-
tion and stress distribution vary with load from small load
(where the contact area varies linearly with the load from a
small load), to high load [where the contact is (nearly)
complete]. Here we will present such a study using mo-
lecular dynamics (MD), and we will compare the numeri-
cal results with the prediction of the analytical contact
mechanics theory of Persson [16—18].

We consider the frictionless contact between elastic
solids with randomly rough surfaces. If z = h;(x) and
h,(x) describe the surface profiles, E; and E, are the
Young’s elastic moduli of the two solids and v; and »,
the corresponding Poisson ratios, then the elastic contact
problem is equivalent to the contact between a rigid solid
(substrate) with the roughness profile h(x) = h;(x) +
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h,(x), in contact with an elastic solid (block) with a flat
surface and with an Young’s modulus E and Poisson ratio »
chosen so that [19]
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Here we define E* = E/(1 — v?) as effective elastic
modulus.

Consider randomly rough surfaces with roughness
wavelength components in some finite range A; < A <
Ag, where A is comparable to (but smaller than) the lateral
size of the nominal contact area. In order to accurately
describe the contact mechanics between elastic blocks, it is
necessary to consider a solid block which extends (at least)
a distance ~A; in the direction normal to the nominal
contact area. This leads to an enormous number of atoms
or dynamical variables even for a small systems. In order to
avoid this trouble we have developed a multiscale MD
approach [12]. The atoms at the interface between the
block and substrate interact with the repulsive potential
U(r) = €(ry/r)'?, where r is the distance between a pair of
atoms, ro = 3.28 A and € = 74.4 meV. In the MD-model
calculations there is no unique way to define the separation
i between the solid walls. Here we have used the same
definition as in Ref. [12] & = d — d,., where d is the
difference between the plane through the center of the
atoms of the top layer of substrate atoms and bottom layer
of block atoms. d.. is the critical atom-atom separation used
to define contact on the atomic scale. Thus, # = 0 corre-
sponds to the separation d. = 4.36 A between planes
through the center of the interfacial atoms of the block
and the substrate.

The system has lateral dimension L = Na, where a is
the lattice space of the block. Periodic boundary condition
is used in xy plane. For the block N = 400, while the
lattice space of the substrate b = a/¢, where ¢ = (1 +
\/5) /2 is the golden mean, in order to avoid the formation
of commensurate structures at the interface. The mass of

© 2008 The American Physical Society


https://core.ac.uk/display/34884176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevLett.100.024303

PRL 100, 024303 (2008)

PHYSICAL REVIEW

week ending

LETTERS 18 JANUARY 2008

the block atoms is 197 a.m.u. and a = 2.6 A, reproducing
the atomic mass and density of gold. The elastic modulus
and Poisson ratio of the block is E = 77.2 GPa and v =
0.42, respectively. The substrate surface has self-affine
fractal surface roughness [12,20]. For a self-affine fractal
surface the power spectrum has power-law behavior
C(q) ~ ¢~ 2"+ where the Hurst exponent H is related
to fractal dimension D, of the surface via H =3 — Dy.
For real surfaces this relation holds only for a finite wave
vector region g < g < g;. Note that in many cases there is
roll-off wave vector g, below which C(g) is approximately
constant. The randomly rough substrates we use have been
generated as described in Ref. [20], and have root-mean-
square roughness /1, = 10 A, fractal dimension is D ;=
2.2, and roll-off wave vector g, = 3¢, where g, = 27/L,
L = 1040 A. We define the magnification { = ¢,/q,. The
contact between block and substrate, has been prepared in
this way: First, the two surfaces are separated in a large
distance, so that the block atoms feel no interaction, or
weak interaction from substrate atoms. Second, the block
is brought down slowly to substrate in a stepwise way (i.e.,
at different positions), so that the block can feel stronger
interaction from substrate when it approaches to substrate.
Then one can bring those configurations at different posi-
tions into equilibrium. Finally, one can get the correspond-
ing pressure, contact area and interfacial separation at each
equilibrated state.

With molecular dynamics simulations we can calculate
the interfacial stress distribution. In order to obtain the
contact area we follow the procedure outlined in
Ref. [12] and fit the numerical results to the theoretically
predicted stress distribution
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where G(p, ¢) depends on the nominal squeezing pressure
p and the magnification £ (but which is independent of the
interfacial stress o, see below), and which we choose to get
the best fit with the numerical data. In Fig. 1 we have
shown the good agreement between the numerical pressure
distribution and the analytical theory (for { = 4) under
three different nominal pressures. Once G is known we
can calculate the relative contact area using [21]
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In Fig. 2(b) we show the relative contact area A/A, as a
function of normalized pressure p/E* from small to full
contact.

The fitted G(p, £) can now be compared with the theory.
Thus, the theory of Persson predicts G = G where,
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FIG. 1 (color online). The pressure distribution for =4
for three different nominal pressure, (a) p/E* = 0.013,
(b) p/E* = 0.113, (¢) p/E* = 0.218. The pressure probability
distribution becomes broader with increasing the squeezing
pressure. Properly choosing the correction factor (see Fig. 2)
makes the numerical results in good agreement with Persson’s
contact mechanics theory.

Figure 2(a) shows the ratio r = G /G which is referred to
as correction factor. Note that r increases from = 0.51 to 1
as the squeezing pressure p increases from zero to infinite
(i.e., the normalized contact area A/A,, increases from zero
to 1). Since the contact area for small load is proportional
to ~1/+/G, it follows that the theory for small load predicts
a contact area about ~30% smaller than that deduced from
the MD simulation. This is slightly larger than what has
been found in earlier numerical simulations. Thus, the
finite element calculations of Hyun and Robbins [22] and
the Green’s function molecular dynamics study of
Campana and Miiser [13] gives r = 0.64, corresponding
to a contact area about ~20% larger than that predicted by
the Persson theory. Similarly, the study of Honig [23] gives
r = 0.56 for small load. However, none of the computer
simulations can be considered as perfectly converged, so
the difference between theory and fully converged numeri-
cal simulation may be smaller than that indicated by the
numbers given above.

Recently Persson theoretically derived the relation be-
tween the average interfacial separation i and the applied
normal squeezing pressure p [18]. For nonadhesive inter-
action and small applied pressure, p ~ e~ #/"_ in a good
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FIG. 2 (color online). (a) Correction factor r as a function of
the contact area ratio A/A,. The points are simulation results,
which have been fitted by the function f(x) = a + bx> + cx® +
dx* under the condition d =1 —a — b — ¢ (solid line). The
corresponding coefficients a, b, ¢ are 0.51, 2.5, —3.3, respec-
tively. (b) The contact area ratio A/A, as a function of squeezing
pressure normalized by effective elastic modulus.

agreement with recent experimental observations [24,25].
Here we numerically calculate the average interfacial sepa-
ration with different squeezing pressure with molecular
dynamics. In Fig. 3 we show the natural logarithm of the
normalized average pressure p/E*, as a function of the
normalized interfacial separation ii/h,,,. We show results
for the magnification { = 4 (open circles) and ¢ = 216
(solid squares). Since the atoms interact with a long-range
repulsive ~r~ 12 pair potential, it is possible to squeeze the
surfaces closer to each other than what corresponds to it =
0. This explains why simulation data points occur also for
ia<0.

In Fig. 4 we compare the MD results from Fig. 3 (open
circles) with the theory presented in Ref. [18] using the
same surface roughness power spectrum (and other pa-
rameters) as in the MD calculation. The theory is in good
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FIG. 3 (color online). An elastic block squeezed against a rigid
rough substrate. The natural logarithm of the normalized average
pressure log(p/E*), as a function of normalized interfacial
separation ii/h,,s on different magnifications { =4 and ¢ =
216.

agreement with the numerical data for 0.2 < i/h,, <2.
For ii/h, < 0.2 the two curves differ because of the
reason discussed above; i.e., the ““soft” potential used in
the MD simulation allows the block and substrate atoms to
approach each other beyond u(x) = 0, while in the ana-
lytical theory the potential is infinite for u(x) < 0 and zero
for u(x) > 0. The difference between the theory and the
MD results for it/ ., > 2 is due to a finite size effect. That
is, since the MD calculations use a very small system, the
highest asperities are only ~3#,,,; above the average plane
(see the height distribution in Ref. [26]), and for large i
very few contact spots will occur, and, in particular, for
i > 3h,., no contact occurs and p must vanish. In the
analytical theory, the system size is assumed to be infinite.
Even for a Gaussian distribution of asperity height, there
will always be infinitely many infinitely high asperities.
Contact will occur at arbitrarily large separation i, and the
asymptotic relation iz ~ logp will hold for arbitrarily large
i at small squeezing pressures p.

Let us now discuss the probability distribution of inter-
facial separation, defined by

P, =(8(u — u(x))), )

where (.. .) is ensemble average. This function is shown in
Fig. 5 for three different loads and two different magnifi-
cations. Note that the distributions of interfacial separa-
tions observed at low and high magnifications are similar
for u > 5 A. This result is expected since mainly the long-
wavelength, large amplitude roughness will determine the
separation between the surfaces when the separation is
large. The quantity P, has many important applications.
For example, for lubricated contact at low sliding velocity,
one may estimate the contribution from shearing the liquid
film to the (nominal) frictional stress using
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FIG. 4 (color online). The relation between the natural loga-
rithm of the squeezing pressure p (normalized by E*) and the
interfacial separation # (normalized by the root-mean-square
roughness amplitude #,,,,) for an elastic solid squeezed against
a rigid surface. The theory curve (solid line) has been calculated
using the theory presented in Ref. [18] with y = 0.42.
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FIG. 5 (color online). Probability distribution of interfacial
separation under different pressure (a) p/E* = 0.002,
(b) p/E* = 0.013, (c) p/E* = 0.113, at low and high magnifi-
cations, respectively. For low pressure, the interfacial separation
probability distribution on low and high magnification is similar
for u>35 A. This result is expected since mainly the long-
wavelength, large amplitude roughness will determine the sepa-
ration between the surfaces when the separation is large.
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where 7) is the viscosity and v the sliding velocity, and
where u,. is a cutoff separation of order nanometer (con-
tinuum fluid dynamics is not valid for liquid films thinner
than a few nanometers). Another important application is
for estimating the fluid leaking through sealing [26].

To summarize, we have performed a molecular dynam-
ics (MD) study of the contact between an elastic block with
a flat surface and a rigid substrate with a randomly rough
surface. The interfacial pressure distribution agrees well
with the analytical theory of Persson. We have also calcu-
lated the area of real contact and the interfacial separation
as a function of load from small to full contact, and
compared the results with the analytical theory. For not
too large or too small squeezing pressures, the MD results
show that the interfacial separation & depends logarithmi-
cally on the squeezing pressure i ~ logp, in a good agree-
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