212 research outputs found

    Geochemistry of hydrothermal fluids from the eastern sector of the Sabatini Volcanic District (central Italy).

    Get PDF
    This study reports a complete geochemical dataset of 215 water and 9 gas samples collected in 2015 from thermal and cold discharges located in the eastern sector of the Sabatini Volcanic District (SVD), Italy. Based on these data, two main aquifers were recognized, as follows: 1) a cold Ca-HCO3 to Ca(Na)-HCO3 aquifer related to a shallow circuit within Pliocene-Pleistocene volcanic and sedimentary formations and 2) a deep CO2-pressurized aquifer hosted in Mesozoic carbonate-evaporitic rocks characterized by a Ca- HCO3(SO4) to Na(Ca)-HCO3(Cl) composition. A thick sequence of low-permeability formations represents a physical barrier between the two reservoirs. Interaction of the CO2-rich gas phase with the shallow aquifer, locally producing high-TDS and low-pH cold waters, is controlled by fractures and faults related to buried horst-graben structures. The d18O-H2O and dD-H2O values indicate meteoric water as the main source for both the shallow and deep reservoirs. Carbon dioxide, which is characterized by d13C-CO2 values ranging from 4.7 to þ1.0‰ V-PDB, is mostly produced by thermo-metamorphic decarbonation involving Mesozoic rock formations, masking possible CO2 contribution from mantle degassing. The relatively low R/Ra values (0.07e1.04) indicate dominant crustal He, with a minor mantle He contribution. The CO2/3He ratios, up to 6 1012, support a dominant crustal source for these two gases. The d34SH2S values (from þ9.3 to þ11.3‰ V-CDT) suggests that H2S is mainly related to thermogenic reduction of Triassic anhydrites. The d13C-CH4 and dD-CH4 values (from 33.4 to 24.9‰ V-PDB and from 168 to 140‰ V-SMOW, respectively) and the relatively low C1/C2þ ratios (<100) are indicative of a prevailing CH4 production through thermogenic degradation of organic matter. The low N2/Ar and high N2/ He ratios, as well as the 40Ar/36Ar ratios (<305) close to atmospheric ratio, suggest that both N2 and Ar mostly derive from air. Notwithstanding, the positive d15N-N2 values (from þ0.91 to þ3.7‰ NBS air) point to a significant extra-atmospheric N2 contribution. Gas geothermometry in the CH4-CO2-H2 and H2S-CO2-H2 systems indicate equilibrium temperatures <200 C, i.e. lower than those measured in deep geothermal wells (~300 C), due to either an incomplete attainment of the chemical equilibria or secondary processes (dilution and/or scrubbing) affecting the chemistry of the uprising fluids. Although the highly saline Na-Cl fluids discharged from the explorative geothermal wells in the study area support the occurrence of a well-developed hydrothermal reservoir suitable for direct exploitation, the chemistry of the fluid discharges highlights that the uprising hydrothermal fluids are efficiently cooled and diluted by the meteoric water recharge from the nearby Apennine sedimentary belt. This explains the different chemical and isotopic features shown by the fluids from the eastern and western sectors of SVD, respectively, the latter being influenced by this process at a lesser extent. Direct uses may be considered a valid alternative for the exploitation of this resource.Published187-2016A. Geochimica per l'ambiente2IT. Laboratori sperimentali e analitici1VV. AltroJCR Journa

    Plume composition and volatile flux of Nyamulagira volcano, Democratic Republic of Congo, during birth and evolution of the lava lake, 2014–2015

    Get PDF
    Very little is known about the volatile element makeup of the gaseous emissions of Nyamulagira volcano. This paper tries to fill this gap by reporting the first gas composition measurements of Nyamulagira’s volcanic plume since the onset of its lava lake activity at the end of 2014. Two field surveys were carried out on 1 November 2014, and 13–15 October 2015. We applied a broad toolbox of volcanic gas composition measurement techniques in order to geochemically characterize Nyamulagira’s plume. Nyamulagira is a significant emitter of SO2, and our measurements confirm this, as we recorded SO2 emissions of up to ~ 14 kt/d during the studied period. In contrast to neighbouring Nyiragongo volcano, however, Nyamulagira exhibits relatively low CO2/SO2 molar ratios ( 92%of total gas emissions). Strong variations in the volatile composition, in particular for the CO2/SO2 ratio, were measured between 2014 and 2015, which appear to reflect the simultaneous variations in volcanic activity.We also determined the molar ratios for Cl/S, F/S and Br/S in the plume gas, finding values of 0.13 and 0.17, 0.06 and 0.11, and 2.3·10−4 and 1·10−4, in 2014 and 2015, respectively. A total gas emission flux of 48 kt/ d was estimated for 2014. The I/S ratio in 2015 was found to be 3.6·10−6. In addition, we were able to distinguish between hydrogen halides and non-hydrogen halides in the volcanic plume. Considerable amounts of bromine (18–35% of total bromine) and iodine (8–18%of total iodine) were found in compounds other than hydrogen halides. However, only a negligible fraction of chlorine was found as compounds other than hydrogen chloride.Published905V. Dinamica dei processi eruttivi e post-eruttiviJCR Journa

    Plume composition changes during the birth of a new lava lake - Nyamulagira volcano, DR Congo

    Get PDF
    Nyamulagira, in the Virunga Volcanic Province (VVP), Democratic Republic of Congo, is one of the most active volcanoes in Africa. The volcano is located about 25 km north-northwest of Lake Kivu in the Western Branch of the East African Rift System (EARS) with a distance of only 15 km to Nyiragongo, which is well known for its decades-old active lava lake. Nyamulagira is a shield volcano with a 3058 m high and 2000 m wide summit caldera. The volcano is characterized by frequent eruptions, which occur both from the summit crater and from the flanks (31 flank eruptions over the last 110 years). Due to the low viscosity lava, although significantly higher than the one of Nyiragongo, wide lava fields cover over 1100 km2 and lava flows often reach > 20 km length. More than 100 flank cones can be counted around the summit crater. A part from its frequent eruptions Nyamulagira had a long period of lava lake activity in the past, at least from 1912 to 1938. During the past decades, gas emissions from Nyamulagira have been only reported during eruptions. This changed in 2012, however, when Nyamulagira began emitting a persistent gas plume above its crater. By the end of 2014, and beginning in 2015, a lava lake was born, a feature that\u2014as of the time of this writing\u2014is still growing. To date, very little is known about gas emissions of Nyamulagira volcano with the only exception for SO2. Very few studies have been conducted regarding the volatile chemistry of Nyamulagira. We try to fill this gap by reporting gas composition measurements of Nyamulagira\u2019s volcanic plume during the birth of the lava lake, and in the first year of the lake\u2019s activity. Two field surveys have been carried out, the first one on November 1st, 2014 and the second one October 13th \u2013 15th, 2015. Applying the broad toolbox of volcanic gas composition measurement techniques offered us the opportunity to characterize Nyamulagira\u2019s plume in excruciating detail. Nyamulagira is known to be a significant emitter of SO2 but shows, perhaps counterintuitively, low CO2/SO2 ratios (min. CO2/SO2 below 0.4). In contrast to Nyiragongo the H2O contribution to the volatile budget of Nyamulagira is high (> 92 % of total gas emissions in 2014). We further determined that molar plume gas ratios of Cl/S, F/S and Br/S all decreased by a factor of two or even more between 2014 and 2015. We will discuss the changes of plume composition in the light of the visually observed evolution of the lava lake and an interpretation on the volcanic system is attempted

    The complete mitochondrial genome of Flustra foliacea (Ectoprocta, Cheilostomata) - compositional bias affects phylogenetic analyses of lophotrochozoan relationships

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The phylogenetic relationships of the lophophorate lineages, ectoprocts, brachiopods and phoronids, within Lophotrochozoa are still controversial. We sequenced an additional mitochondrial genome of the most species-rich lophophorate lineage, the ectoprocts. Although it is known that there are large differences in the nucleotide composition of mitochondrial sequences of different lineages as well as in the amino acid composition of the encoded proteins, this bias is often not considered in phylogenetic analyses. We applied several approaches for reducing compositional bias and saturation in the phylogenetic analyses of the mitochondrial sequences.</p> <p>Results</p> <p>The complete mitochondrial genome (16,089 bp) of <it>Flustra foliacea </it>(Ectoprocta, Gymnolaemata, Cheilostomata) was sequenced. All protein-encoding, rRNA and tRNA genes are transcribed from the same strand. <it>Flustra </it>shares long intergenic sequences with the cheilostomate ectoproct <it>Bugula</it>, which might be a synapomorphy of these taxa. Further synapomorphies might be the loss of the DHU arm of the tRNA L(UUR), the loss of the DHU arm of the tRNA S(UCN) and the unique anticodon sequence GAG of the tRNA L(CUN). The gene order of the mitochondrial genome of <it>Flustra </it>differs strongly from that of the other known ectoprocts. Phylogenetic analyses of mitochondrial nucleotide and amino acid data sets show that the lophophorate lineages are more closely related to trochozoan phyla than to deuterostomes or ecdysozoans confirming the Lophotrochozoa hypothesis. Furthermore, they support the monophyly of Cheilostomata and Ectoprocta. However, the relationships of the lophophorate lineages within Lophotrochozoa differ strongly depending on the data set and the used method. Different approaches for reducing heterogeneity in nucleotide and amino acid data sets and saturation did not result in a more robust resolution of lophotrochozoan relationships.</p> <p>Conclusion</p> <p>The contradictory and usually weakly supported phylogenetic reconstructions of the relationships among lophotrochozoan phyla based on mitochondrial sequences indicate that these alone do not contain enough information for a robust resolution of the relations of the lophotrochozoan phyla. The mitochondrial gene order is also not useful for inferring their phylogenetic relationships, because it is highly variable in ectoprocts, brachiopods and some other lophotrochozoan phyla. However, our study revealed several rare genomic changes like the evolution of long intergenic sequences and changes in the structure of tRNAs, which may be helpful for reconstructing ectoproct phylogeny.</p

    Developmental expression of COE across the Metazoa supports a conserved role in neuronal cell-type specification and mesodermal development

    Get PDF
    The transcription factor COE (collier/olfactory-1/early B cell factor) is an unusual basic helix–loop–helix transcription factor as it lacks a basic domain and is maintained as a single copy gene in the genomes of all currently analysed non-vertebrate Metazoan genomes. Given the unique features of the COE gene, its proposed ancestral role in the specification of chemosensory neurons and the wealth of functional data from vertebrates and Drosophila, the evolutionary history of the COE gene can be readily investigated. We have examined the ways in which COE expression has diversified among the Metazoa by analysing its expression from representatives of four disparate invertebrate phyla: Ctenophora (Mnemiopsis leidyi); Mollusca (Haliotis asinina); Annelida (Capitella teleta and Chaetopterus) and Echinodermata (Strongylocentrotus purpuratus). In addition, we have studied COE function with knockdown experiments in S. purpuratus, which indicate that COE is likely to be involved in repressing serotonergic cell fate in the apical ganglion of dipleurula larvae. These analyses suggest that COE has played an important role in the evolution of ectodermally derived tissues (likely primarily nervous tissues) and mesodermally derived tissues. Our results provide a broad evolutionary foundation from which further studies aimed at the functional characterisation and evolution of COE can be investigated

    Hormonal signaling in cnidarians : do we understand the pathways well enough to know whether they are being disrupted?

    Get PDF
    Author Posting. © The Author, 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecotoxicology 16 (2007): 5-13, doi:10.1007/s10646-006-0121-1.Cnidarians occupy a key evolutionary position as basal metazoans and are ecologically important as predators, prey and structure-builders. Bioregulatory molecules (e.g., amines, peptides and steroids) have been identified in cnidarians, but cnidarian signaling pathways remain poorly characterized. Cnidarians, especially hydras, are regularly used in toxicity testing, but few studies have used cnidarians in explicit testing for signal disruption. Sublethal endpoints developed in cnidarians include budding, regeneration, gametogenesis, mucus production and larval metamorphosis. Cnidarian genomic databases, microarrays and other molecular tools are increasingly facilitating mechanistic investigation of signaling pathways and signal disruption. Elucidation of cnidarian signaling processes in a comparative context can provide insight into the evolution and diversification of metazoan bioregulation. Characterizing signaling and signal disruption in cnidarians may also provide unique opportunities for evaluating risk to valuable marine resources, such as coral reefs

    Development of the rhopalial nervous system in Aurelia sp.1 (Cnidaria, Scyphozoa)

    Get PDF
    We examined the development of the nervous system in the rhopalium, a medusa-specific sensory structure, in Aurelia sp.1 (Cnidaria, Scyphozoa) using confocal microscopy. The rhopalial nervous system appears primarily ectodermal and contains neurons immunoreactive to antibodies against tyrosinated tubulin, taurine, GLWamide, and FMRFamide. The rhopalial nervous system develops in an ordered manner: the presumptive gravity-sensing organ, consisting of the lithocyst and the touch plate, differentiates first; the “marginal center,” which controls swimming activity, second; and finally, the ocelli, the presumptive photoreceptors. At least seven bilaterally arranged neuronal clusters consisting of sensory and ganglion cells and their neuronal processes became evident in the rhopalium during metamorphosis to the medusa stage. Our analysis provides an anatomical framework for future gene expression and experimental studies of development and functions of scyphozoan rhopalia

    Visualization and 3D Reconstruction of Flame Cells of Taenia solium (Cestoda)

    Get PDF
    BACKGROUND: Flame cells are the terminal cells of protonephridial systems, which are part of the excretory systems of invertebrates. Although the knowledge of their biological role is incomplete, there is a consensus that these cells perform excretion/secretion activities. It has been suggested that the flame cells participate in the maintenance of the osmotic environment that the cestodes require to live inside their hosts. In live Platyhelminthes, by light microscopy, the cells appear beating their flames rapidly and, at the ultrastructural, the cells have a large body enclosing a tuft of cilia. Few studies have been performed to define the localization of the cytoskeletal proteins of these cells, and it is unclear how these proteins are involved in cell function. METHODOLOGY/PRINCIPAL FINDINGS: Parasites of two different developmental stages of T. solium were used: cysticerci recovered from naturally infected pigs and intestinal adults obtained from immunosuppressed and experimentally infected golden hamsters. Hamsters were fed viable cysticerci to recover adult parasites after one month of infection. In the present studies focusing on flame cells of cysticerci tissues was performed. Using several methods such as video, confocal and electron microscopy, in addition to computational analysis for reconstruction and modeling, we have provided a 3D visual rendition of the cytoskeletal architecture of Taenia solium flame cells. CONCLUSIONS/SIGNIFICANCE: We consider that visual representations of cells open a new way for understanding the role of these cells in the excretory systems of Platyhelminths. After reconstruction, the observation of high resolution 3D images allowed for virtual observation of the interior composition of cells. A combination of microscopic images, computational reconstructions and 3D modeling of cells appears to be useful for inferring the cellular dynamics of the flame cell cytoskeleton

    The Application of DNA Barcodes for the Identification of Marine Crustaceans from the North Sea and Adjacent Regions

    Get PDF
    During the last years DNA barcoding has become a popular method of choice for molecular specimen identification. Here we present a comprehensive DNA barcode library of various crustacean taxa found in the North Sea, one of the most extensively studied marine regions of the world. Our data set includes 1,332 barcodes covering 205 species, including taxa of the Amphipoda, Copepoda, Decapoda, Isopoda, Thecostraca, and others. This dataset represents the most extensive DNA barcode library of the Crustacea in terms of species number to date. By using the Barcode of Life Data Systems (BOLD), unique BINs were identified for 198 (96.6%) of the analyzed species. Six species were characterized by two BINs (2.9%), and three BINs were found for the amphipod species Gammarus salinus Spooner, 1947 (0.4%). Intraspecific distances with values higher than 2.2% were revealed for 13 species (6.3%). Exceptionally high distances of up to 14.87% between two distinct but monophyletic clusters were found for the parasitic copepod Caligus elongatus Nordmann, 1832, supporting the results of previous studies that indicated the existence of an overlooked sea louse species. In contrast to these high distances, haplotype-sharing was observed for two decapod spider crab species, Macropodia parva Van Noort & Adema, 1985 and Macropodia rostrata (Linnaeus, 1761), underlining the need for a taxonomic revision of both species. Summarizing the results, our study confirms the application of DNA barcodes as highly effective identification system for the analyzed marine crustaceans of the North Sea and represents an important milestone for modern biodiversity assessment studies using barcode sequence
    corecore