19,694 research outputs found
SL(2,C) Chern-Simons theory and the asymptotic behavior of the colored Jones polynomial
We clarify and refine the relation between the asymptotic behavior of the
colored Jones polynomial and Chern-Simons gauge theory with complex gauge group
SL(2,C). The precise comparison requires a careful understanding of some
delicate issues, such as normalization of the colored Jones polynomial and the
choice of polarization in Chern-Simons theory. Addressing these issues allows
us to go beyond the volume conjecture and to verify some predictions for the
behavior of the subleading terms in the asymptotic expansion of the colored
Jones polynomial.Comment: 15 pages, 7 figure
Fast ignition driven by quasi-monoenergetic ions: Optimal ion type and reduction of ignition energies with an ion beam array
Fast ignition of inertial fusion targets driven by quasi-monoenergetic ion
beams is investigated by means of numerical simulations. Light and intermediate
ions such as lithium, carbon, aluminium and vanadium have been considered.
Simulations show that the minimum ignition energies of an ideal configuration
of compressed Deuterium-Tritium are almost independent on the ion atomic
number. However, they are obtained for increasing ion energies, which scale,
approximately, as Z^2, where Z is the ion atomic number. Assuming that the ion
beam can be focused into 10 {\mu}m spots, a new irradiation scheme is proposed
to reduce the ignition energies. The combination of intermediate Z ions, such
as 5.5 GeV vanadium, and the new irradiation scheme allows a reduction of the
number of ions required for ignition by, roughly, three orders of magnitude
when compared with the standard proton fast ignition scheme
Resonant spin polarization and spin current in a two-dimensional electron gas
We study the spin polarization and its associated spin-Hall current due to
EDSR in disordered two-dimensional electron systems. We show that the disorder
induced damping of the resonant spin polarization can be strongly reduced by an
optimal field configuration that exploits the interference between Rashba and
Dresselhaus spin-orbit interaction. This leads to a striking enhancement of the
spin susceptibility while the spin-Hall current vanishes at the same time. We
give an interpretation of the spin current in geometrical terms which are
associated with the trajectories the polarization describes in spin space.Comment: (5 pages), updated references, corrected typo
The Martial Arts and American Popular Media.
Ph.D. Thesis. University of HawaiÊ»i at MÄnoa 2018
Anisotropic Decay Dynamics of Photoexcited Aligned Carbon Nanotube Bundles
We have performed polarization-dependent ultrafast pump-probe spectroscopy of
a film of aligned single-walled carbon nanotube bundles. By taking into account
imperfect nanotube alignment as well as anisotropic absorption cross sections,
we quantitatively determined distinctly different photo-bleaching dynamics for
polarizations parallel and perpendicular to the tube axis. For perpendicular
polarization, we observe a slow (1.0-1.5 ps) relaxation process, previously
unobserved in randomly-oriented nanotube bundles. We attribute this slower
dynamics to the excitation and relaxation of surface plasmons in the radial
direction of the nanotube bundles.Comment: 4 pages, 3 figure
Carbon stars in the IRTS survey
We have identified 139 cool carbon stars in the near-infrared
spectro-photometric survey of the InfraRed Telescope in Space (IRTS) from the
conspicuous presence of molecular absorption bands at 1.8, 3.1 and 3.8 microns.
Among them 14 are new, bright (K ~ 4.0-7.0), carbon stars. We find a trend
relating the 3.1 microns band strength to the K-L' color index, which is known
to correlate with mass-loss rate. This could be an effect of a relation between
the depth of the 3.1 microns feature and the degree of development of the
extended stellar atmosphere where dust starts to form.Comment: accepted by the PASP; December 7, 200
Mutant knots and intersection graphs
We prove that if a finite order knot invariant does not distinguish mutant
knots, then the corresponding weight system depends on the intersection graph
of a chord diagram rather than on the diagram itself. The converse statement is
easy and well known. We discuss relationship between our results and certain
Lie algebra weight systems.Comment: 13 pages, many figure
Tuning phase transition between quantum spin Hall and ordinary insulating phases
An effective theory is constructed for analyzing a generic phase transition
between the quantum spin Hall and the insulator phases. Occurrence of
degeneracies due to closing of the gap at the transition are carefully
elucidated. For systems without inversion symmetry the gap-closing occurs at
\pm k_0(\neq G/2) while for systems with inversion symmetry, the gap can close
only at wave-numbers k=G/2, where G is a reciprocal lattice vector. In both
cases, following a unitary transformation which mixes spins, the system is
represented by two decoupled effective theories of massive two-component
fermions having masses of opposite signs. Existence of gapless helical modes at
a domain wall between the two phases directly follows from this formalism. This
theory provides an elementary and comprehensive phenomenology of the quantum
spin Hall system.Comment: 6 pages, 2 figures, to appear in Phys. Rev.
- âŠ