19,694 research outputs found

    SL(2,C) Chern-Simons theory and the asymptotic behavior of the colored Jones polynomial

    Get PDF
    We clarify and refine the relation between the asymptotic behavior of the colored Jones polynomial and Chern-Simons gauge theory with complex gauge group SL(2,C). The precise comparison requires a careful understanding of some delicate issues, such as normalization of the colored Jones polynomial and the choice of polarization in Chern-Simons theory. Addressing these issues allows us to go beyond the volume conjecture and to verify some predictions for the behavior of the subleading terms in the asymptotic expansion of the colored Jones polynomial.Comment: 15 pages, 7 figure

    Fast ignition driven by quasi-monoenergetic ions: Optimal ion type and reduction of ignition energies with an ion beam array

    Get PDF
    Fast ignition of inertial fusion targets driven by quasi-monoenergetic ion beams is investigated by means of numerical simulations. Light and intermediate ions such as lithium, carbon, aluminium and vanadium have been considered. Simulations show that the minimum ignition energies of an ideal configuration of compressed Deuterium-Tritium are almost independent on the ion atomic number. However, they are obtained for increasing ion energies, which scale, approximately, as Z^2, where Z is the ion atomic number. Assuming that the ion beam can be focused into 10 {\mu}m spots, a new irradiation scheme is proposed to reduce the ignition energies. The combination of intermediate Z ions, such as 5.5 GeV vanadium, and the new irradiation scheme allows a reduction of the number of ions required for ignition by, roughly, three orders of magnitude when compared with the standard proton fast ignition scheme

    Resonant spin polarization and spin current in a two-dimensional electron gas

    Full text link
    We study the spin polarization and its associated spin-Hall current due to EDSR in disordered two-dimensional electron systems. We show that the disorder induced damping of the resonant spin polarization can be strongly reduced by an optimal field configuration that exploits the interference between Rashba and Dresselhaus spin-orbit interaction. This leads to a striking enhancement of the spin susceptibility while the spin-Hall current vanishes at the same time. We give an interpretation of the spin current in geometrical terms which are associated with the trajectories the polarization describes in spin space.Comment: (5 pages), updated references, corrected typo

    The Martial Arts and American Popular Media.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2018

    Anisotropic Decay Dynamics of Photoexcited Aligned Carbon Nanotube Bundles

    Full text link
    We have performed polarization-dependent ultrafast pump-probe spectroscopy of a film of aligned single-walled carbon nanotube bundles. By taking into account imperfect nanotube alignment as well as anisotropic absorption cross sections, we quantitatively determined distinctly different photo-bleaching dynamics for polarizations parallel and perpendicular to the tube axis. For perpendicular polarization, we observe a slow (1.0-1.5 ps) relaxation process, previously unobserved in randomly-oriented nanotube bundles. We attribute this slower dynamics to the excitation and relaxation of surface plasmons in the radial direction of the nanotube bundles.Comment: 4 pages, 3 figure

    Carbon stars in the IRTS survey

    Full text link
    We have identified 139 cool carbon stars in the near-infrared spectro-photometric survey of the InfraRed Telescope in Space (IRTS) from the conspicuous presence of molecular absorption bands at 1.8, 3.1 and 3.8 microns. Among them 14 are new, bright (K ~ 4.0-7.0), carbon stars. We find a trend relating the 3.1 microns band strength to the K-L' color index, which is known to correlate with mass-loss rate. This could be an effect of a relation between the depth of the 3.1 microns feature and the degree of development of the extended stellar atmosphere where dust starts to form.Comment: accepted by the PASP; December 7, 200

    Mutant knots and intersection graphs

    Full text link
    We prove that if a finite order knot invariant does not distinguish mutant knots, then the corresponding weight system depends on the intersection graph of a chord diagram rather than on the diagram itself. The converse statement is easy and well known. We discuss relationship between our results and certain Lie algebra weight systems.Comment: 13 pages, many figure

    Tuning phase transition between quantum spin Hall and ordinary insulating phases

    Full text link
    An effective theory is constructed for analyzing a generic phase transition between the quantum spin Hall and the insulator phases. Occurrence of degeneracies due to closing of the gap at the transition are carefully elucidated. For systems without inversion symmetry the gap-closing occurs at \pm k_0(\neq G/2) while for systems with inversion symmetry, the gap can close only at wave-numbers k=G/2, where G is a reciprocal lattice vector. In both cases, following a unitary transformation which mixes spins, the system is represented by two decoupled effective theories of massive two-component fermions having masses of opposite signs. Existence of gapless helical modes at a domain wall between the two phases directly follows from this formalism. This theory provides an elementary and comprehensive phenomenology of the quantum spin Hall system.Comment: 6 pages, 2 figures, to appear in Phys. Rev.
    • 

    corecore