5,736 research outputs found

    Magnetotail structures in a simulated Earth's magnetosphere

    Get PDF
    The structure of the magnetotail is investigated in a laboratory simulated magnetosphere. Particular emphasis is placed on the region of distant magnetotail where the closed field line region of the plasma sheet terminates and the process of reconnection takes place. Our study builds upon the previous investigation of the magnetotail where the main results were based on the magnetic field measurements in the tail region of the simulated magnetosphere. In this paper, more elaborate measurements of plasma flow and electric field are presented. Besides these measurements, this region of distant magnetotail is also explored by high resolution imaging with a gated optical imager (GOI) and by digital image analysis. These images clearly reveal a Y-type magnetic neutral line for the northward 'interplanetary' field (IMF) and a usual X-type for the southward IMF that confirms our previous results deduced from the magnetic field measurements. In the neighborhood of these neutral points a strong component of dawn to dusk electric field (E(sub y)) and a counterstreaming plasma flow is also observed. Plasma flow is measured by using a double sided Faraday cup which is also used to measure the y-component of tail current (J(sub y)) at different locations. These measurements reveal that the tail current is not carried by ions as previously thought, rather it is carried by electrons alone

    Statistical properties of spectral fluctuations for a quantum system with infinitely many components

    Full text link
    Extending the idea formulated in Makino {\it{et al}}[Phys.Rev.E {\bf{67}},066205], that is based on the Berry--Robnik approach [M.V. Berry and M. Robnik, J. Phys. A {\bf{17}}, 2413], we investigate the statistical properties of a two-point spectral correlation for a classically integrable quantum system. The eigenenergy sequence of this system is regarded as a superposition of infinitely many independent components in the semiclassical limit. We derive the level number variance (LNV) in the limit of infinitely many components and discuss its deviations from Poisson statistics. The slope of the limiting LNV is found to be larger than that of Poisson statistics when the individual components have a certain accumulation. This property agrees with the result from the semiclassical periodic-orbit theory that is applied to a system with degenerate torus actions[D. Biswas, M.Azam,and S.V.Lawande, Phys. Rev. A {\bf 43}, 5694].Comment: 6 figures, 10 page

    Simplicity of eigenvalues in the Anderson model

    Full text link
    We give a simple, transparent, and intuitive proof that all eigenvalues of the Anderson model in the region of localization are simple

    Semiconductor-enriched single wall carbon nanotube networks applied to field effect transistors

    Full text link
    Substantial progress on field effect transistors "FETs" consisting of semiconducting single wall carbon nanotubes "s-SWNTs" without detectable traces of metallic nanotubes and impurities is reported. Nearly perfect removal of metallic nanotubes is confirmed by optical absorption, Raman measurements, and electrical measurements. This outstanding result was made possible in particular by ultracentrifugation (150 000 g) of solutions prepared from SWNT powders using polyfluorene as an extracting agent in toluene. Such s-SWNTs processable solutions were applied to realize FET, embodying randomly or preferentially oriented nanotube networks prepared by spin coating or dielectrophoresis. Devices exhibit stable p-type semiconductor behavior in air with very promising characteristics. The on-off current ratio is 10^5, the on-current level is around 10 μ\muA, and the estimated hole mobility is larger than 2 cm2 / V s

    Spectral flow and level spacing of edge states for quantum Hall hamiltonians

    Full text link
    We consider a non relativistic particle on the surface of a semi-infinite cylinder of circumference LL submitted to a perpendicular magnetic field of strength BB and to the potential of impurities of maximal amplitude ww. This model is of importance in the context of the integer quantum Hall effect. In the regime of strong magnetic field or weak disorder B>>wB>>w it is known that there are chiral edge states, which are localised within a few magnetic lengths close to, and extended along the boundary of the cylinder, and whose energy levels lie in the gaps of the bulk system. These energy levels have a spectral flow, uniform in LL, as a function of a magnetic flux which threads the cylinder along its axis. Through a detailed study of this spectral flow we prove that the spacing between two consecutive levels of edge states is bounded below by 2παL12\pi\alpha L^{-1} with α>0\alpha>0, independent of LL, and of the configuration of impurities. This implies that the level repulsion of the chiral edge states is much stronger than that of extended states in the usual Anderson model and their statistics cannot obey one of the Gaussian ensembles. Our analysis uses the notion of relative index between two projections and indicates that the level repulsion is connected to topological aspects of quantum Hall systems.Comment: 22 pages, no figure

    Decorrelation estimates for the eigenlevels of the discrete Anderson model in the localized regime

    Full text link
    The purpose of the present work is to establish decorrelation estimates for the locally renormalized eigenvalues of the discrete Anderson model near two distinct energies inside the localization region. In dimension one, we prove these estimates at all energies. In higher dimensions, the energies are required to be sufficiently far apart from each other

    Robust graphene-based monoliths of homogeneous ultramicroporosity

    Get PDF
    Graphite oxide (GO) and graphene monoliths were prepared using the unidirectional freezing of GO water suspension. These materials were saturated with a poly(ammonium-4-styrene sulfonate) water soluble polymer and then carbonized at 1123 K. This process increases significantly the materials strength and density. A uniform deposition of the polymer-derived carbon on the external layers of the graphene sheets of the monolith was found. The carbon from polymer not only provided more contact between the graphene sheets but also apparently increased the overall graphitization level (based on Raman spectra). The modification decreased the electrical resistance by one order of magnitude compared to that of the graphene monolith. N-2 adsorption at 77 K showed that the thus-treated graphene monoliths have quite homogenous pores with the pore width of 0.7 nm. These pores, combined with large transport pores, and conductive properties make the monoliths tested the promising materials for separation, energy storage, and/or gas sensing. The tunability of the properties and pore structure of the robust graphene ultramicroporous monolith through the control of chemistry of the initial GO monolith was shown. (C) 2015 Elsevier Ltd. All rights reserved.ArticleCARBON. 87:87-97 (2015)journal articl

    Development of a FPGA based PCI-express to optical link interface card, KINPEX

    Get PDF

    Non-Universal Critical Behaviour of Two-Dimensional Ising Systems

    Full text link
    Two conditions are derived for Ising models to show non-universal critical behaviour, namely conditions concerning 1) logarithmic singularity of the specific heat and 2) degeneracy of the ground state. These conditions are satisfied with the eight-vertex model, the Ashkin-Teller model, some Ising models with short- or long-range interactions and even Ising systems without the translational or the rotational invariance.Comment: 17 page
    corecore