1,281 research outputs found

    Role of interface coupling inhomogeneity in domain evolution in exchange bias

    Full text link
    Models of exchange-bias in thin films have been able to describe various aspects of this technologically relevant effect. Through appropriate choices of free parameters the modelled hysteresis loops adequately match experiment, and typical domain structures can be simulated. However, the use of these parameters, notably the coupling strength between the systems' ferromagnetic (F) and antiferromagnetic (AF) layers, obscures conclusions about their influence on the magnetization reversal processes. Here we develop a 2D phase-field model of the magnetization process in exchange-biased CoO/(Co/Pt)xn that incorporates the 10 nm-resolved measured local biasing characteristics of the antiferromagnet. Just three interrelated parameters set to measured physical quantities of the ferromagnet and the measured density of uncompensated spins thus suffice to match the experiment in microscopic and macroscopic detail. We use the model to study changes in bias and coercivity caused by different distributions of pinned uncompensated spins of the antiferromagnet, in application-relevant situations where domain wall motion dominates the ferromagnetic reversal. We show the excess coercivity can arise solely from inhomogeneity in the density of biasing- and anti-biasing pinned uncompensated spins in the antiferromagnet. Counter to conventional wisdom, irreversible processes in the latter are not essential

    Halbach arrays at the nanoscale from chiral spin textures

    Full text link
    Mallinson's idea that some spin textures in planar magnetic structures could produce an enhancement of the magnetic flux on one side of the plane at the expense of the other gave rise to permanent magnet configurations known as Halbach magnet arrays. Applications range from wiggler magnets in particle accelerators and free electron lasers, to motors, to magnetic levitation trains, but exploiting Halbach arrays in micro- or nanoscale spintronics devices requires solving the problem of fabrication and field metrology below 100 {\mu}m size. In this work we show that a Halbach configuration of moments can be obtained over areas as small as 1 x 1 {\mu}m^2 in sputtered thin films with N\'eel-type domain walls of unique domain wall chirality, and we measure their stray field at a controlled probe-sample distance of 12.0 x 0.5 nm. Because here chirality is determined by the interfacial Dyzaloshinkii-Moriya interaction the field attenuation and amplification is an intrinsic property of this film, allowing for flexibility of design based on an appropriate definition of magnetic domains. 100 nm-wide skyrmions illustrate the smallest kind of such structures, for which our measurement of stray magnetic fields and mapping of the spin structure shows they funnel the field toward one specific side of the film given by the sign of the Dyzaloshinkii-Moriya interaction parameter D.Comment: 12 pages, 4 figure

    f-scLVM: scalable and versatile factor analysis for single-cell RNA-seq.

    Get PDF
    Single-cell RNA-sequencing (scRNA-seq) allows studying heterogeneity in gene expression in large cell populations. Such heterogeneity can arise due to technical or biological factors, making decomposing sources of variation difficult. We here describe f-scLVM (factorial single-cell latent variable model), a method based on factor analysis that uses pathway annotations to guide the inference of interpretable factors underpinning the heterogeneity. Our model jointly estimates the relevance of individual factors, refines gene set annotations, and infers factors without annotation. In applications to multiple scRNA-seq datasets, we find that f-scLVM robustly decomposes scRNA-seq datasets into interpretable components, thereby facilitating the identification of novel subpopulations

    Bimodal magnetic force microscopy with capacitive tip-sample distance control

    Get PDF
    A single-passage, bimodal magnetic force microscopy technique optimized for scanning samples with arbitrary topography is discussed. A double phase-locked loop (PLL) system is used to mechanically excite a high quality factor cantilever under vacuum conditions on its first mode and via an oscillatory tip-sample potential on its second mode. The obtained second mode oscillation amplitude is then used as a proxy for the tip-sample distance, and for the control thereof. With appropriate z-feedback parameters two data sets reflecting the magnetic tip-sample interaction and the sample topography are simultaneously obtained

    Assessing the reliability of spike-in normalization for analyses of single-cell RNA sequencing data.

    Get PDF
    By profiling the transcriptomes of individual cells, single-cell RNA sequencing provides unparalleled resolution to study cellular heterogeneity. However, this comes at the cost of high technical noise, including cell-specific biases in capture efficiency and library generation. One strategy for removing these biases is to add a constant amount of spike-in RNA to each cell and to scale the observed expression values so that the coverage of spike-in transcripts is constant across cells. This approach has previously been criticized as its accuracy depends on the precise addition of spike-in RNA to each sample. Here, we perform mixture experiments using two different sets of spike-in RNA to quantify the variance in the amount of spike-in RNA added to each well in a plate-based protocol. We also obtain an upper bound on the variance due to differences in behavior between the two spike-in sets. We demonstrate that both factors are small contributors to the total technical variance and have only minor effects on downstream analyses, such as detection of highly variable genes and clustering. Our results suggest that scaling normalization using spike-in transcripts is reliable enough for routine use in single-cell RNA sequencing data analyses.This work was supported by Cancer Research UK (core funding to JCM, award no. A17197), the University of Cambridge and Hutchison Whampoa Limited. JCM was also supported by core funding from EMBL. LHV was supported by an EMBL Interdisciplinary Postdoctoral fellowship. Work in the G ottgens group was supported by Cancer Research UK, Bloodwise, the National Institute of Diabetes and Digestive and Kidney Diseases, the Leukemia and Lymphoma Society and core infrastructure grants from the Wellcome Trust and the Medical Research Council to the Cambridge Stem Cell Institute

    Active Cognitive Lifestyle Associates with Cognitive Recovery and a Reduced Risk of Cognitive Decline

    Get PDF
    Education and lifestyle factors linked with complex mental activity are thought to affect the progression of cognitive decline. Collectively, these factors can be combined to create a cognitive reserve or cognitive lifestyle score. This study tested the association between cognitive lifestyle score and cognitive change in a population-based cohort of older persons from five sites across England and Wales. Data came from 13,004 participants of the Medical Research Council Cognitive Function and Ageing Study who were aged 65 years and over. Cognition was assessed at multiple waves over 16 years using the Mini-Mental State Examination. Subjects were grouped into four cognitive states (no impairment, slight impairment, moderate impairment, severe impairment) and cognitive lifestyle score was assessed as a composite measure of education, mid-life occupation, and current social engagement. A multi-state model was used to test the effect of cognitive lifestyle score on cognitive transitions. Hazard ratios for cognitive lifestyle score showed significant differences between those in the upper compared to the lower tertile with a more active cognitive lifestyle associating with: a decreased risk of moving from no to slight impairment (0.58, 95% CI (0.45, 0.74)); recovery from a slightly impaired state back to a non-impaired state (2.93 (1.35, 6.38)); but an increased mortality risk from a severely impaired state (1.28 (1.12, 1.45)). An active cognitive lifestyle is associated with a more favorable cognitive trajectory in older persons. Future studies would ideally incorporate neuroradiological and neuropathological data to determine if there is causal evidence for these associations

    The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936

    Get PDF
    Background: The DNA methylation-based 'epigenetic clock' correlates strongly with chronological age, but it is currently unclear what drives individual differences. We examine cross-sectional and longitudinal associations between the epigenetic clock and four mortality-linked markers of physical and mental fitness: lung function, walking speed, grip strength and cognitive ability. Methods: DNA methylation-based age acceleration (residuals of the epigenetic clock estimate regressed on chronological age) were estimated in the Lothian Birth Cohort 1936 at ages 70 (n=920), 73 (n=299) and 76 (n=273) years. General cognitive ability, walking speed, lung function and grip strength were measured concurrently. Cross-sectional correlations between age acceleration and the fitness variables were calculated. Longitudinal change in the epigenetic clock estimates and the fitness variables were assessed via linear mixed models and latent growth curves. Epigenetic age acceleration at age 70 was used as a predictor of longitudinal change in fitness. Epigenome-wide association studies (EWASs) were conducted on the four fitness measures. Results: Cross-sectional correlations were significant between greater age acceleration and poorer performance on the lung function, cognition and grip strength measures (r range: -0.07 to -0.05, P range: 9.7 x 10 to 0.024). All of the fitness variables declined over time but age acceleration did not correlate with subsequent change over 6 years. There were no EWAS hits for the fitness traits. Conclusions: Markers of physical and mental fitness are associated with the epigenetic clock (lower abilities associated with age acceleration). However, age acceleration does not associate with decline in these measures, at least over a relatively short follow-up
    corecore