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Abstract
As our brains age, we tend to experience cognitive decline and are at greater risk of neurodegenerative disease and dementia.
Symptoms of chronic neuropsychiatric diseases are also exacerbated during ageing. However, the ageing process does not
affect people uniformly; nor, in fact, does the ageing process appear to be uniform even within an individual. Here, we
outline recent neuroimaging research into brain ageing and the use of other bodily ageing biomarkers, including telomere
length, the epigenetic clock, and grip strength. Some of these techniques, using statistical approaches, have the ability to
predict chronological age in healthy people. Moreover, they are now being applied to neurological and psychiatric disease
groups to provide insights into how these diseases interact with the ageing process and to deliver individualised predictions
about future brain and body health. We discuss the importance of integrating different types of biological measurements,
from both the brain and the rest of the body, to build more comprehensive models of the biological ageing process. Finally,
we propose seven steps for the field of brain-ageing research to take in coming years. This will help us reach the long-term
goal of developing clinically applicable statistical models of biological processes to measure, track and predict brain and
body health in ageing and disease.

Introduction

As we age, the molecules, cells, tissues, and organs within
our bodies undergo changes. The biology of the ageing
process is complex [1], and is yet to be fully characterised.
Though precise definitions of ageing can be controversial, it
can generally be seen as the gradual accumulation of
deleterious biological changes accompanying a progressive
loss of function [2]. What is uncontentious, however, is that
ageing increases the risk of morbidity and mortality in

humans, as in most species (c.f., the polyp species Hydra).
What is also clear is that humans do not experience biolo-
gical ageing at the same rate, with pronounced differences
in the outward manifestations of ageing being observed
(e.g., hair loss, skin wrinkles, presbyopia). The age of onset
for age-related diseases is also highly variable, as is indi-
vidual lifespan. This has motivated biogerontological
research efforts to measure ageing from a biological per-
spective, with the goal of producing ‘ageing biomarkers’
(see Box 1) that are better predictors of disease risk and
residual lifespan than chronological age alone [3]. In theory,
such a biomarker could be used to predict risk of age-related
disease and mortality, to monitor biological ageing over
time, and to evaluate potential treatments aimed at
improving health during ageing.

Ageing has consequences for the brain and any patient
suffering from a chronic psychiatric or neurological dis-
order will be exposed to ageing effects during the course of
their disease. Potentially, by measuring the biological age of
the brain in people with neuropsychiatric diseases, we may
better understand disease risk and resilience, the effects of
these diseases on the ageing brain, and improve predictions
of health outcomes by capturing individual differences in
the interactions between ageing and disease. The physio-
logical changes associated with brain ageing include
the macroscopic (e.g., ventricular enlargement, cortical
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thinning, decreased post-mortem weight, the accumulation
of white matter hyperintensities) [4–6], the cellular (e.g.,
synaptic pruning, axonal loss, mitochondrial changes,
alterations to glial cell numbers) [7–9], through to the
molecular (e.g., altered gene expression, disrupted calcium
signalling, epigenetic changes) [9–11]. Behaviourally, brain
ageing is associated with cognitive decline (commonly
described as cognitive ageing; particularly affecting cogni-
tive domains such as information processing speed, mem-
ory, reasoning, and executive function) [12, 13], decreased
well-being and increased symptoms of low mood [14–16].
Neurodegenerative diseases are also increasingly common
in older adults [17], with dementia arguably representing
the final common endpoint of various age-related neuro-
pathological insults.

The importance of maintaining a healthy brain during
ageing is increasingly being recognised as a goal for
society. Not only is the risk of neuropsychiatric diseases
increased, but symptoms are exacerbated and prognosis
worsened by older age. Accordingly, neuroscientists have
taken a biogerontological approach to develop specific
in vivo biomarkers to measure brain ageing [18–22]. Here,
we outline how these putative brain-ageing biomarkers
could potentially provide information about how the brain
changes with age and how neuropsychiatric diseases inter-
act with the brain-ageing process. Building on our recent
opinion article [23], here we aim to put brain-ageing bio-
marker research in the context of more classic bioger-
ontological research into blood-derived or physiological
ageing biomarkers. Finally, we discuss how and why brain
and other bodily ageing biomarkers should be combined, as
this may provide insights into more fundamental aspects of
biological ageing as well as help predict neuropsychiatric
and general health outcomes.

Brain ageing, cognitive ageing, and
physiological ageing

Neuroimaging, and particularly magnetic resonance ima-
ging (MRI), can provide varied and detailed information on
the living human brain. The application of methods derived
from the study of artificial intelligence, particularly machine
learning, has enabled researchers to use high-dimensional
MRI datasets to build predictive statistical models of brain
ageing. These models assume a trajectory of brain ageing
(Fig. 1) that represents an individual’s accumulation of
deleterious changes that lead to alterations in brain function
and increased risk of cognitive decline and disease.

The models, generally using data from T1-weighted MRI
scans of brain structure, are informed by ‘learning’ the
relationship between age and brain structure in large sam-
ples of healthy adults. Model performance, evaluated by

Box 1 Ageing biomarkers

The rationale for research into ageing biomarkers is as follows: (i)
pronounced individual differences in lifespan are commonly seen
in humans, suggesting that chronological time is not directly
equivalent to the rate of ageing; (ii) differences in ageing rates are
probably mediated by underlying biological processes that
influence lifespan and age-related disease manifestation, them-
selves influenced by genetic factors and environmental conditions;
(iii) as human lifespan exceeds the reasonable timescale of
interventional trials for improving healthy ageing, methods for
accurately measures ageing rates are needed (i.e., ageing
biomarkers).
As pointed out by Ludwig & Smoke in 1980 [28], biological age is
not something that can be directly observed; instead it must be
inferred from quantifiable epiphenomena. These quantifiable
epiphenomena (i.e., ageing biomarkers), have long been sought
by researchers in the field of biogerontology and take many forms.
Candidates include grip strength, gum health, lung function,
HbA1C levels, mean arterial pressure, white blood cell count, cell
membrane viscosity, corneal endothelial thickness, cholesterol
levels or cytomegalovirus optical density, to name but a few. As
detailed herein, recent ‘omics research has identified further
candidates using profiles of epigenetic, metabolomic, or transcrip-
tomic signatures [69]. More recently, neuroscientific measures
derived from neuroimaging are also being considered [23, 128].
Given the plethora of candidates, efforts to standardise the criteria
for qualification as an ageing biomarker have been proposed. For
example, as reported by Johnson [36], the American Federation for
Aging Research stipulated that an ageing biomarker must:

1. Predict the rate of ageing, (i.e., inform where a person is in

their total lifespan). It must be a better predictor of lifespan

than chronological age.

2. Monitor a basic process that underlies the ageing process,

not the effects of disease.

3. Can be tested repeatedly without causing harm.

4. Work in humans and in laboratory animals, so it can be

tested in animals prior to validation in humans.

However, as noted by both Johnson and Sprott [36, 129], the
second criterion is somewhat contentious. Given that ageing is the
major risk factor for many diseases, disentangling which processes
are distinct to ageing or to disease, and particularly pre-manifest
disease, is extremely challenging. In fact, some ageing and disease
processes may well be shared, only differing in degree rather than
in form.
Nevertheless, the search for ageing biomarkers has continued
apace. Although some studies frame a measure of a single aspect
of human biology as a marker of biological age (i.e., implying that
this is a global measure for an individual), it appears increasingly
unlikely that any such universal biological age measure will be
identified [121]. Instead, the growing consensus is on combining
data from different aspects of biology to generate composite
measures that better reflect a unitary process [37, 119, 120]. In
future, it is hoped that increasingly well-characterised datasets
containing multiple candidate ageing biomarkers will allow the
modelling of both local biological age (e.g., brain age, leukocyte
telomere age, blood-cell DNA methylation age) and global,
composite biological age. This should enable us to reach the
optimal panel of markers of underlying patterns of biological
ageing, that can be used for trialling interventional strategies and
predicting future age-related health.

J. H. Cole et al.



predicting chronological age based on brain scans from new
individuals, results in mean prediction errors of less than
five years [19, 21, 24–27]. These models can then be used
to generate a biological age from neuroimaging data, a
‘brain-predicted age’. Following the established bioger-
ontological model of determining the discrepancy between
the chronological and biological age of an organism [28], if
an individual’s brain-predicted age is greater than their
chronological age, this indicates that their brain structure
more closely resembles a healthy person who is older than
they are. The assumption is that greater discrepancies
between brain-predicted age and chronological age reflect
poorer brain health, for a given age. Different research
groups refer to this discrepancy using different names (e.g.,
brain-age gap [GBA], brain-age gap estimate [brainAGE])
[21, 29]; here, we use the term brain-predicted age differ-
ence (brain-PAD); mathematically this is chronological age
subtracted from brain-predicted age (Fig. 2).

This approach to modelling brain ageing makes infer-
ences based on errors in model prediction, hence external
validation is essential. Key to validating brain-predicted age
is to relate it to other measures of ageing, such as cognitive
or physiological assessments. Using data from the Lothian
Birth Cohort 1936 [30, 31], we recently sought to do this.
Using neuroimaging measures of brain volume from this

general population, narrow age-range (approximately 73
years old) cohort, brain-PAD was calculated for 669 people
[32]. We demonstrated that brain-PAD was significantly
negatively related to a composite measure of cognitive
function (standardised beta from linear regression=−0.12),
designed to reflect ageing-related changes in general, fluid
cognitive functioning [33]. Furthermore, in this cohort,
brain-PAD was also related to a panel of physiological
measures designed to assess health in ageing. Having an
older-appearing brain was associated with weaker grip
strength (standardised beta=−0.06), poorer lung function
(standardised beta=−0.07), and slower time to walk 6
metres (standardised beta= 0.13). This suggests that mea-
sures of age-associated brain volume are sensitive to the
same underlying factors that cause physiological changes
during ageing.

Another potential demonstration of the validity of an
ageing biomarker is to consider how such a measure behaves
in circumstances of ‘accelerated’ biological ageing. One such
example is Down’s syndrome (DS), where trisomy of chro-
mosome 21 results in a broadly progeroid (i.e., resembling
older age) phenotype [34, 35]. Our analysis of brain-predicted
age in 46 adults with DS showed that the mean brain-PAD
was 2.5 years in this group, significantly greater than local
healthy control participants (mean brain-PAD=−5.2 years).
This suggests that some of the changes to brain structure in
DS resemble those seen during ageing, much like the outward
physiological manifestations of the syndrome. When con-
sidering the variability of brain-PAD scores in participants
with DS, those with greater brain-PAD had greater levels of
beta-amyloid deposition (measured using Pittsburgh-
compound B [PiB] positron emission tomography [PET]
scans, standardised beta= 0.29). Interestingly, in individuals
with DS who also had signs of amyloid deposition, there was
a strong relationship between brain-PAD and cognitive per-
formance (standardised beta=−0.51). This was not seen in
DS individuals who were ‘PiB negative’ for amyloid. In other
words, people with DS who exhibited signs of some of the
key pathological facets of brain ageing (i.e., amyloid
deposition, cognitive decline) also had older-appearing brains.
This suggests that brain-PAD is a potentially useful method
for understanding individual differences in brain ageing in
DS, which may in turn relate to risk of Alzheimer’s disease.
However, the large effect sizes observed in this relatively
small study require replication and longitudinal assessment
before brain-PAD can be taken further towards clinical
applications in DS.

The relationship of a putative ageing biomarker to resi-
dual lifespan (i.e., how much longer a person has to live) is
another important measure of validity [36]. Again, using the
Lothian Birth Cohort 1936, we assessed whether brain-PAD
related to survival after MRI scanning at age ~73 years.
Mortality data up to age ~80 years were obtained via
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Fig. 1 Differential trajectories of brain ageing. Illustration of the
concept of ageing trajectories, specifically brain ageing. With
increasing age, even healthy people are at higher risk of cognitive
impairment and brain diseases, eventually reaching a threshold where
symptoms appear. Individuals can differ in their brain-ageing trajec-
tories. For example, a person may have genetic or developmental
environmental factors that confer a higher rate of ageing throughout
life (blue line). Alternatively, someone may experience a traumatic
injury or infection in adulthood (black arrow), which results in them
following an accelerated (purple line) or accentuated, but stable (yel-
low line), trajectory of brain ageing. While the example used here is of
brain ageing, the same model can be used to conceptualise biological
ageing more generally

Brain age and other bodily ‘ages’: implications for neuropsychiatry



linkage with healthcare records in Scotland. At time of
analysis, 10.9% (n= 73 out of 669) of the participants had
died. Here, brain-PAD was a significant predictor of sur-
vival in a Cox proportional hazards regression model,
whereby having an older-appearing brain was associated
with reduced survival times (Fig. 3). Specifically, for each
additional year of brain ageing (+1 year brain-PAD) there
was a 6% increase in the likelihood of death (hazard ratio=
1.06, 95% confidence intervals 1.03–1.09) [32]. Interest-
ingly, the most common cause of death was cardiac disease,
suggesting that brain ageing is not causing death per se, but
that the brain is sensitive to the deleterious consequences of
ageing that occur more systemically. As Jackson et al. [37]
pointed out, “while the selected biomarkers are not thought
to be specific harbingers of death, their rates of decline are
assumed to reflect a decline in organ and system efficiency,
and hence to qualify for the purpose in hand”. Potentially,
neuroimaging-derived brain-predicted age may be a proxy
of underlying brain and systemic integrity during ageing.

Though initial data validating brain-predicted age as an
ageing biomarker are promising, additional validation in
other age-related contexts are needed to support its wider
use in brain diseases. Brain-predicted age is under a degree
of genetic influence [19], which motivates the search for
relevant risk genes for poorer brain ageing. Brain-predicted
age is reliable (intra-class correlation coefficient= 0.97
within scanner, 0.92 between scanner) [19], making it sui-
table for use in longitudinal studies predicting individual
trajectories of brain health over time. Given suitable
development, brain-predicted age may in future provide
insights into overall biological ageing across the population
(see Box 2).
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Fig. 2 Brain-predicted age and brain-PAD. a The results of using
Gaussian processes regression to predict chronological age using
structural neuroimaging data in a sample of 2001 healthy individuals,
aged 18–90 years, based on ten-fold cross validation (mean absolute
error= 4.93 years, r= 0.94). b Same as a, with the brain-predicted age
values for participants from the Lothian Birth Cohort 1936 overlaid in
red. This demonstrates that, despite the narrow age range at time of
scanning (72–74 years), these N= 669 individuals had a wide

variability in brain-predicted ages. c Illustration of how brain-predicted
age difference (brain-PAD) scores are calculated, highlighting the
individuals from the Lothian Birth Cohort 1936 with the lowest and
highest brain-predicted ages. Brain-PAD is the difference between
brain-predicted age and chronological age for an individual. Positive
brain-PAD suggests that the individual’s brain appears older than their
chronological age, whereas a negative brain-PAD suggests that their
brain appears younger
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Fig. 3 Survival curves based on high and low brain-PAD at age
approximately 73 years. Illustration of the relationship between brain-
predicted age difference (brain-PAD) and survival over 8 years after
MRI scanning at a mean age of 73 years in the Lothian Birth Cohort
1936 [32]. Kaplan–Meier plot shows the survival curves for indivi-
duals grouped according to whether their brain-PAD was in the upper
(red) or lower (blue) quartile of the distribution. Survival probably is
observed to be lower for those with high brain-PAD. Crosses on the
survival curves indicate age at last assessment (i.e., right censored
data). These are for illustration only; the analyses were conducted with
all-available participants’ data, and brain-PAD was entered as a con-
tinuous variable
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Box 2 Seven future directions for brain-ageing research

The overall goals of brain-ageing research are: (i) to understand
how the brain changes as we age; (ii) to understand why the brain
changes as we age; and (iii) to help improve brain health and
reduce the impact of cognitive decline and neuropsychiatric
diseases during ageing. To meet these goals, we have identified
seven key future directions for the field:

1. Characterise the spectrum of brain ageing. To better

understand how the human brain changes with age, we need

a clearer picture of the different possibilities. Efforts to

define the population variability in brain structure and

function across the life course and to build so-called

normative models of brain ageing will be vital to define this

spectrum of different possibilities. This will enable us to

locate an individual within the spectrum of brain ageing and

have a clearer idea of what constitutes the gradient between

healthy and pathological ageing-related changes that may

result from a neuropsychiatric disorder.

2. Continue to open up more, expertly curated, datasets. The

number of large datasets becoming publicly-available is

increasing, and the informatics necessary for processing and

analysing these data to maximise their utility are also

emerging. As even more biomedical data sharing occurs, it

is essential that we further encourage comprehensive,

scalable and extendable informatics platforms and standards.

Efforts such as the Dementias Platform UK (https://www.

dementiasplatform.uk/) and BRAINS Imagebank

(http://www.brainsimagebank.ac.uk/) are underway to col-

late data from diverse sources [130]. Standardisation

initiatives such as BIDS (Brain Imaging Data Structure:

http://bids.neuroimaging.io) and analytic platforms such as

Nipype (http://nipype.readthedocs.io) are gathering more

traction in the community. Such efforts should allow sharing

and combining of different datasets from diverse sources

and will be particularly important as moves to open access to

clinically acquired neuroimaging data gather momentum.

3. Externally validate brain-ageing models. Eminent statisti-

cian George Box said, “Essentially, all models are wrong,

but some are useful”. For brain-ageing research, along with

any other statistical modelling endeavour, it is essential that

predictive models are validated in external datasets to

demonstrate that they provide useful predictions. Merely

showing reasonable within-sample accuracy is insufficient,

particularly if framed around unilluminating prediction goals

(e.g., classification of patients with manifest disease from

healthy controls).

4. Identify individual spatial patterns of brain ageing.

Currently, most brain-age research has taken a global

approach, using either whole brain or total grey matter data

to generate a single brain-predicted age value per individual.

However, it is likely that differential spatial patterns of brain

ageing occur within individuals, e.g., in the context of

different diseases. Therefore, research aimed at developing

individualised ‘saliency’ maps to better understand which

parts of the brain are driving brain-age predictions or even

voxelwise brain-predicted age images could be informative.

Such research could be used to compare spatial patterns of

brain ageing across different disease states, potentially

distinguishing them or identifying within-disease subgroups,

leading to new insights about the brain regions underlying

healthy ageing or ageing-disease interactions.

5. Recognise the continuum of ageing and disease. Conven-

tional wisdom states that health and disease are qualitatively

different, and that ageing itself is not a disease. However, in

the modern era of chronic disease and extended pre-manifest

disease stages, this distinction needs to be reconsidered.

Instead of measuring how healthy people and people with a

disease differ, we need a conceptual shift, so we can better

consider how ageing and disease processes are similar, and

how they might interact to influence prognosis and treatment

response in the case of neuropsychiatric and neurodegen-

erative diseases.

6. Integrate more closely with biogerontology. As we outline

herein, evidence now suggests that, to gain a comprehensive

understanding of ageing from a biological perspective, data

from all-available sources needs be considered. Historically,

the neuroscientific domain of brain ageing has been

separated from that of biogerontology, where the brain is

largely neglected. Given the importance of brain–body

interactions for mediating a host of biological functions and

behaviours, it essential that brain ageing and biogerontolo-

gical research become more closely integrated, through

collaboration and research capacity building, to the benefit

of both.

7. Aim for greater clinical applicability. A greater focus on

clinical and healthcare applications is needed to translate this

growing knowledge of brain ageing to have practical utility.

Given the ageing global population, the prevalence of

chronic diseases that influence brain health, and the costs to

society associated with cognitive decline and dementia, we

urgently need to improve brain and body health as we age.

Predictive models of brain and body ageing could be

beneficial here. As indices of underlying biological ageing,

they could serve as either a measurable risk factor for

increased susceptibility to age-related health problems or a

surrogate outcome measure of protective or deleterious

effects of disease or interventions on the ageing brain. For

example, in the context of clinical trial of a neuroprotective

treatment in a neuropsychiatric disease, these measures

could be used to stratifying enrolment, screening for people

with higher biological age, under the assumption that they

would be at greater risk for clinical decline over a shorter

timeframe. Longitudinal changes to measures of biological

age could also be used as outcomes in clinical trials,

Brain age and other bodily ‘ages’: implications for neuropsychiatry
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Brain ageing and disease

Ageing is a key risk factor for many major medical health
problems, not least neurodegenerative diseases. Further-
more, even if ageing does not increase risk of a specific
chronic disease, older age likely worsens disease symptoms
and prognosis. This motivates research into how measures
of biological ageing relate to disease risk or disease pro-
gression, and how diseases in turn can influence rates of
biological ageing. In fact, a number of neurological and
psychiatric diseases have been proposed to result in pre-
mature or accelerated ageing, based on clinical observations
and behavioural or biological research. These include
schizophrenia, depression, epilepsy, HIV infection, and
traumatic brain injury [38–42]. Validating these ideas is
currently difficult, as there is no consensus operationalised
definition of an accelerated-ageing phenotype, making the
concept controversial [43]. Nevertheless, neurodegeneration
is one of the four key components of ageing proposed by
Margolick & Ferruci [43]; therefore, models of brain ageing
offer a possible window into the relationship between
ageing and disease. If a disease can be shown to accelerate
the ageing-related phenotype of brain structure, this pro-
vides information about the potential mechanisms involved
and highlights possible commonalities across diagnostic
categories. Importantly, it also enables the measurement of
individual differences in disease groups, with prognostic
implications for future brain health.

A number of psychiatric disorders have been investigated
using brain-predicted age metrics (Table 1). In schizo-
phrenia, reports have suggested that not only is greater brain
ageing observed, particularly in males [24, 44], but that this
accelerates over time [29]. In other psychotic conditions,
such as bipolar disorder and at-risk mental states, increased
brain ageing is less evident [24, 44]. Koutsourleris et al.'s
comprehensive study also included patients diagnosed with
major depressive disorder (MDD), finding a mean added
brain ageing of 4 years [24]. Individuals with borderline
personality disorder were studied, showing a mean added
brain ageing of 3.1 years. These preliminary studies indicate
that psychiatric disorders do indeed result in premature age-
related changes to brain structure, though further validation

in larger samples is required, such as that currently being
undertaken by the ENIGMA-MDD consortium [45].

The development of mild cognitive impairment (MCI)
and subsequent Alzheimer’s disease are some of the key
pathological consequences of the brain-ageing process.
Using neuroimaging, people diagnosed with Alzheimer’s
have been shown to have greater apparent brain ageing,
from various analyses using the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) dataset [21, 46–48]. In people
with MCI, brain-predicted age was a significant predictor of
progression to dementia within three years of baseline MRI
scan [46, 48, 49]. This is important as it demonstrates that
brain-predicted age is sensitive to subtle underlying changes
to the brain that occur prior to overt disease manifestation.
In slowly progressive neurodegenerative conditions like
Alzheimer’s, tools that identify people at greater risk of
future morbidity could be particularly useful, both for
clinical practice and for the design of clinical trials, either
by stratifying trial enrolment or as a surrogate outcome
measure. Some evidence also suggests that APOE genotype
is associated with increased brain ageing in ADNI [48],
with Alzheimer’s disease patients carrying the e4 allele
showing greater longitudinal changes in brain-predicted age
compared to non-e4 carriers. However, an APOE effect was
not observed in people with DS nor in a general population
sample [32, 50]. Whereas neuroimaging measures of brain
ageing appear to be heritable [19], as would be expected
given the demonstrated heritability of measures of brain
volume [51], further research is necessary to conclusively
identify specific genetic factors that influence rates of brain
ageing.

An important consideration regarding the relevance of
brain-predicted age for psychiatric diseases is the lack of
specificity. The average ‘added’ brain-ageing is relatively
similar across different disorders. The limits the use of
brain-predicted age to differentially diagnose diseases or
generate disease-specific insights into potential brain-
structural mechanisms. An alternative application of brain-
predicted age (or other ageing biomarkers) in the context of
psychiatric diseases is to capture individual differences
within disease groups, as the observed variability is often
relatively high. For example, if within a group of patients
with MDD some individuals show higher brain-PAD than
others, these patients may have experienced greater severity
of disease, resulting in greater downstream accumulation of
age-related damage to the brain. They may also be at
increased risk of subsequent general cognitive dysfunction,
particularly given reports associating brain-predicted age
with cognitive performance [32, 50, 52, 53]. As cognitive
dysfunction is thought to relate to general functional ability
in MDD [54] and a combination of MDD and cognitive
decline may increase risk for dementia in older adults
[55–57], then information about an individuals’ apparent

particularly in at-risk or prodromal groups where measuring

clinical symptoms is challenging. Evidence that an inter-

vention reduces biological age differences over time could

suggest that a given intervention is beneficial to brain health.

Finally, biological measures of brain and body have the

potential be used in general clinical practice, to screen

people and identify those at increased risk of poorer brain

and body health as they age.
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Table 1 Studies of brain-predicted age in disease

Study Clinical group N Age (mean ±
SD, or range)

MRI features Algorithm Brain-PAD (mean,
years)

Psychiatric disorders

Franke et al. [21] Alzheimer’s disease 102 76 ± 8 GM RVR 10.0

Franke and Gaser [46] MCI—stable 36 77 ± 6 GM RVR BL: −0.5
FU (3 yrs): −0.4

MCI—progressive 112 74 ± 7 GM RVR BL: 6.2
FU (3 yrs): 9.0

Alzheimer’s disease 150 75 ± 8 GM BL: 6.7
FU (2 yrs): 9.0

Koutsouleris et al. [24] High psychosis risk 89 25 ± 6 GM SVR 1.7

Schizophrenia 141 28 ± 12 GM SVR 5.5

Major depression 104 42 ± 8 GM SVR 4.0

Gaser et al. [49] MCI—progressive (early/late) 58/75 74 ± 7/75 ± 7 GM RVR 8.7/5.6

Schnack et al. [29] Schizophrenia 341 34 ± 12 GM SVR BL: 3.4
FU (4 yrs): 4.3

Löwe et al. [48] MCI—stable (APOE ε4 carriers/
non-carriers)

14/22 77 ± 6/77 ± 6 GM RVR BL: −0.9/−0.9
FU(3 yrs): 0.0/−0.6

MCI—progressive (APOE ε4
carriers/non-carriers)

78/34 74 ± 6/75 ± 9 GM RVR BL: 5.8/5.5
FU (3 yrs): 8.7/7.3

Alzheimer’s disease (APOE ε4
carriers/non-carriers)

101/49 74 ± 7/76 ± 9 GM RVR BL: 5.8/6.2
FU (2 yrs): 8.3/7.7

Nenadic et al. [44] Bipolar disorder 22 38 ± 11 GM SVR −1.3

Borderline personality disorder 57 26 ± 7 GM SVR 3.1

Schizophrenia 45 34 ± 10 GM SVR 2.6

Li et al. [47] Alzheimer’s disease 411 75 ± 7 Hippocampal
volume

SVR 7.0

Varikuti et al. [66] Alzheimer’s disease 163 56–91 GM LASSO 8.5; 10.7a

MCI 64 55–87 GM LASSO 6.2; 5.4a

Kolenic et al. [131] Psychosis (first episode) 120 27 ± 4.9 GM RVR 2.6

Guggenmos et al. [132] Alcohol dependence 119 20–65 GM MLRR 4.0

Neurological disorders

Cole et al. [52] Traumatic brain injury 99 38 ± 12 GM/WM GPR 4.7/6.0

Cole et al. [59] HIV 162 57 ± 8 Whole brain GPR 2.2

Cole et al. [133] HIV 131 56 ± 6 Whole brain GPR BL: 1.6
FU (2 yrs): 1.6

Cole et al. [50] Down’s syndrome 46 42 ± 9 Whole brain GPR 2.5

Pardoe et al. [58] Epilepsy (medically refractory/
newly-diagnosed)

94/42 32 ± 14/31 ± 11 Whole brain GPR 4.5/0.9

Liem et al. [53] Objective cognitive impairment
(mild/major)

632/251 58 ± 15/58 ± 16 Whole brain SVR/RF 0.7/1.7

Physiological disorders

Franke et al. [60] Diabetes (type II) 98 65 ± 8 GM RVR 4.6

Diabetes (type II)—longitudinal 12 63 ± 7 GM RVR BL: 5.1
FU (4 yrs): 5.9

Ronan et al. [61] Obesity 227 58 ± 17 WM NLME 10.0

Franke et al. [134] Gestational nutrient restriction
(female/male)

22/19 67 ± 0.2/67 ±
0.1

GM RVR 0.9/2.5

BL baseline, FU follow-up, GM grey matter, GPR Gaussian process regression, LASSO Least Absolute Shrinkage and Selection Operator, MCI
mild cognitive impairment, MLRR multi-linear ridge regression, NLME non-linear mixed effects model, RF random forests, RVR relevance vector
regression, SVR support vector regression, WM white matter
aStudy included results from two different training datasets
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brain ageing could be used to target treatments and inter-
ventions to those at greater risk.

Neurological conditions have also been assessed to
establish their influence on brain ageing (Table 1).
Increased brain ageing has been observed in survivors of a
traumatic brain injury [52], in treatment-resistant epilepsy
[58], and to a lesser extent, in adults with successfully
treated HIV [59]. As with studies of people from the general
population, these studies showed a moderate, but consistent
relationship between brain-predicted age and cognitive
performance, whereby individuals with older-appearing
brains performed more poorly in a range of cognitive
domains. So, although accentuated in certain disease con-
ditions, it seems that measures of brain ageing are tapping
into something more general that relates to brain health.
Future research should follow these groups longitudinally to
establish whether the apparent increases in brain ageing are
stable or accelerating over time, and how this relates to
cognitive outcomes.

Finally, the relationship between physiological health
conditions without an explicit central nervous system (CNS)
component and brain ageing has been explored. Both obe-
sity and type II diabetes mellitus have been associated with
higher brain-predicted age than chronological age [60, 61].
These studies reinforce two important points. Firstly,
they support the idea that chronic systemic disorders have
wide-ranging deleterious effects on the body, which
includes affecting the brain, leading to increased accumu-
lation of age-like changes. Secondly, technical develop-
ments in neuroimaging mean that we now have a
robust and reliable measure of the adverse effects of these
conditions during ageing. For example, in light of concerns
over the chronic neurological consequences of obesity for
an ageing society [62], brain-predicted age could be used to
measure individual differences in how severely obesity
impacts brain health. Of course, it will be useful to see
future studies like these including other ageing biomarkers
so that brain ageing can be compared with them in different
contexts.

Whether or not ageing itself is a disease is a controversial
topic [63]. Nevertheless, the growing body of literature
investigating neuropsychiatric diseases from the perspective
of brain ageing suggests that these diseases can accentuate
some of the brain structural changes that occur in healthy
ageing. However, it is important not to assume that the same
effects are occurring in different conditions in which brain-
predicted age is increased. There is scope to explore the
spatial patterns underlying increased brain-predicted
age in different diseases to determine any similarities
between diseases. Multiple approaches to evaluating
feature (e.g., voxel or brain region) importance in
machine-learning models of neuroimaging data exist,
including weight-vector mapping, sensitivity mapping and

analytically approximated permutations [64, 65]. Recently,
Varikuti et al. [66] used an orthonormal non-negative
matrix factorisation approach combined with LASSO
regression to determine which grey matter regions most
influenced age prediction. They found that the majority of
cortical and subcortical areas were involved in age predic-
tion, suggesting much of the brain is affected by the ageing
process. Interestingly, the exact spatial patterns of feature
importance varied across prediction models, which had used
different training datasets. This suggests that there are
potentially multiple solutions to the problem of predicting
age from volumetric MRI data, making it difficult to isolate
a universal brain ageing ‘signature’. This motivates research
into methods for identifying an individual’s spatial patterns
of brain ageing (Box 2). This should enable examination of
what factors relate to specific brain-ageing patterns, allow-
ing better evaluation of whether different diseases can result
in similar brain changes, along the ageing spectrum. If brain
ageing is a global phenomenon [67], the brain’s inter-
connectedness could mean that similar global changes occur
downstream as a result of spatially disparate initial insults,
even in diseases with focal brain damage. This inter-
connectedness is not only at the level of brain structure and
function, but also at molecular and cellular scales, with
putative ‘molecular nexopathies’ [68], Wallerian degen-
eration and circulating immune factors (e.g., cytokines)
providing potential mechanisms whereby local damage
could precipitate global changes that, arguably, resemble
those seen in ageing.

Importantly, measures of brain ageing in mild, prodromal
disease stages can predict the progression to further cog-
nitive decline and dementia. This implies that a more
comprehensive picture of the disease process could be
gained by combining more specific measures that reflect
distinct pathologies with more general measures of the brain
ageing process.

Bodily ageing biomarkers

The introduction of neuroscientific data into the search for
ageing biomarkers is relatively recent. The majority
of other research has focused on biochemical measures,
often derived from blood samples, as recently reviewed by
Jylhävä et al. [69]. Alongside biochemical measures,
physiological measures of biological ageing have also
shown considerable promise, representing the outward
phenotypic manifestation of underlying age-related
biological changes. Many potential ageing biomarkers
have been proposed, and here we provide an overview
of leading candidates. Our intention here is to sketch
broadly the conceptual landscape in which brain ageing
resides.
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Telomere length and ageing

Telomeres are the nucleo-protein complexes present at the
end of all eukaryotic chromosomes. As they shorten each
time a somatic cell divides [70, 71], telomere length is often
considered an ageing biomarker [72]. Telomere shortening,
commonly measured in leukocytes, is associated with a
number of environmental factors, including socio-economic
status, smoking, oxidative stress, and psychological stress
[73–75]. However, the correlation between telomere length
and chronological age was shown to be about r=−0.3 in a
systematic review [76], a weaker relationship with age than
other candidates, such as the epigenetic clock, as high-
lighted by Jylhävä et al. [69].

Over recent years, an increasing body of evidence has
suggested that telomere length predicts a small amount of
variation in brain, cognitive, and other physiological func-
tions and ageing. Shorter leukocyte telomere length has
been linked to: subcortical atrophy (beta=−0.217) and
white matter hyperintensities (WMHs) (telomeres of indi-
viduals with subcortical WMHs were 371 bp shorter) in a
sample of 102 non-demented older individuals [77]; global
and regional brain volume in a cohort of 1960 middle-aged
individuals (betas= 0.04–0.08) [78]; hippocampal volume
in 47 middle-aged women (R2= 0.28–0.50) [79]. However,
a meta-analysis of telomere length and hippocampal
volume, including 2107 individuals, failed to find a sig-
nificant association [80]. Such findings mean that the rela-
tionship between molecular senescence and brain structure
remains unclear.

Individual cohort studies of the association between tel-
omere length and cognitive ability have also proved equi-
vocal. A meta-analysis of 12 European cohorts (N=
17,052, mean age= 59.2 ±8.8 years), which included
Mendelian Randomisation to investigate causation, con-
cluded that longer telomeres result in better cognitive per-
formance, although not all findings withstood multiple
testing correction or replication [81]. There are fewer stu-
dies that have investigated telomere length and longitudinal
cognitive decline. However, our work with the Lothian
Birth Cohorts from 1921 and 1936 allowed us to test this
association [30]. These general population cohorts included
a total N of ~1500 older individuals at baseline. We found
that although both telomere length and cognitive ability
decreased with age, they did so independently, and telomere
length at baseline was not associated with cognitive decline
[82]. However, a meta-analysis of 13 studies (860 patients
and 2022 controls) found consistent evidence of shorter
telomeres in Alzheimer’s disease patients (standardised
mean difference=−0.984) [83].

Telomere length has also been suggested as a biomarker
of other neuropsychiatric disorders including MDD, schi-
zophrenia and bipolar disorder. A meta-analysis of 14,827

individuals indicated that shorter telomere length is asso-
ciated with a diagnosis of a psychiatric condition (Hedge’s
g=−0.50) [84].

Shorter telomere length has repeatedly been associated
with increased mortality, and in a large cohort study (N=
64,637) was associated with increased all-cause mortality
(hazard ratio= 1.40), cancer mortality (hazard ratio= 1.52),
and cardiovascular mortality (hazard ratio= 1.52) [85].
However, there is little evidence for telomere length as a
biomarker of physical decline. Meta-analyses of a number
of physical traits (walking and chair-rise speed, standing
balance time, grip strength) with sample sizes ranging from
1217 to 3707 found only very weak associations between
any of the measures and telomere length [86].

Currently, evidence clearly shows that telomere length
declines with age and has some association with mortality
and neuropsychiatric disorders. However, it is not a highly
predictive biomarker of ageing, thus its use as a measure of
biological age at an individual level is not well supported by
available data.

DNA methylation and ageing

While the underlying genetic sequence remains stable over
the life course, epigenetic marks, such as DNA methylation
—the addition of a methyl group to a cytosine nucleotide in
a cytosine–phosphate–guanine pair (CpG)—are dynamic
and influenced by both genes and the environment.
Microarray technology now enables analysis of methylation
at upwards of 500,000 CpG sites across the genome. DNA
methylation appears to vary with age, and thus methylation
data have been used an ageing biomarker. DNA methyla-
tion patterns can be used to predict accurately an indivi-
dual’s chronological age, as first shown by Hannum et al.
[87], and by Horvath [11]; so-called ‘epigenetic clocks’. By
using penalised regression methods, Hannum and collea-
gues derived a 71 CpG-site methylation signature based on
482 whole blood samples that correlated 0.91 with chron-
ological age in 174 independent samples. Horvath derived a
353 CpG-site signature based on over 8000 samples from
51 tissue types to provide a multi-tissue predictor that
correlated 0.96 with chronological age in independent
samples. DNA methylation can be studied using DNA
derived from any type of nuclear cell, and whereas the
majority of extant research has used blood samples, DNA
methylation age is not necessarily consistent across tissue
types within an individual [11].

Recently, Horvath proposed updated versions of both the
‘Hannum’ and ‘Horvath’ clocks that incorporate additional
information from age-associated white blood cell counts,
which can be imputed from methylation array data [88].
Other, more parsimonious clocks have also been built, for
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example, a 3 CpG-site clock was derived from a pyr-
osequencing approach in place of array data [89]. There are
also strong correlations (r > 0.9) with individual CpG sites
and chronological age, such as cg16867657 in the ELOVL2
gene [90].

Typically, epigenetic epidemiology studies consider both
the Hannum and Horvath versions of the epigenetic clock.
The biomarker metric used in these studies has been dubbed
‘epigenetic age acceleration’ and is either the raw difference
between an individual’s DNA-methylation-predicted age
(akin to brain-PAD), or the residual from the regression of
DNA-methylation-predicted age on chronological age.

Statistically significant associations between epigenetic
age have been reported in a variety of contexts. These
include our work on longevity, whereby having a 5-year
increase in epigenetic age was associated with 21%
increased mortality risk [91]. We also previously found that
older epigenetic age was associated with poorer cognitive
ability (standardised beta=−0.07), grip strength (standar-
dised beta=−0.05), lung function (standardised beta=
−0.06) and walking speed (standardised beta= 0.03) [92].
Other researchers have reported epigenetic age associations
with obesity [93], HIV [94], Down’s syndrome [95], and
Alzheimer’s disease pathology [96]. In all instances, a
‘faster running’ epigenetic clock—methylation age older
than chronological age—was associated with poorer health
and function. Men typically have higher epigenetic ages
than women by around 1 year [11, 87]. The heritability of
both Hannum and Horvath age acceleration is around 40%
[91].

Finally, epigenetic outlier burden—the number of times
an individual’s methylation levels are more than three times
the inter-quartile range below or above the 25th or 75th
percentile of a CpG in the population—has been shown to
correlate with chronological age, whereby more outliers
accumulate over time [97]. How this burden relates to
epigenetic clock measures or a broad spectrum of age-
associated measures is yet to be investigated.

Lipids biomarkers of ageing

Lipids are highly prevalent in the brain and are important
constituents of cell membranes and also act as signalling
molecules [98]. Recent advances in mass spectrometry
mean that hundreds to thousands of lipids can now be
measured in blood plasma or serum [98, 99]. Studies indi-
cate that changes in lipid metabolism are detectable in
Alzheimer’s patients and may predict subsequent cognitive
decline, making them a promising biomarker for AD [100,
101]. Sphingolipids, which are particularly abundant in the
brain, have been associated with variation in memory
impairment (OR= 0.31) and brain white matter structure

(betas= 0.17–15.7) in older non-demented individuals,
suggesting that they may also be a biomarker of normal
cognitive ageing [102, 103]. Lipidomics is in its infancy,
but is a promising area of research which may lead to the
development of reliable biomarkers for AD and normal
cognitive ageing.

Protein glycosylation biomarkers of ageing

Protein structure, which is defined by DNA sequences, does
not change with age. However, glycans are also important
constituents of most proteins. They are the product of
complex pathways that involve many different proteins and
are encoded in complex dynamic networks of hundreds of
genes. Glycosylation of proteins does change with age,
explaining up to 58% of the variance in chronological age
[104]. GlycanAge also correlates with a number of bio-
chemical and physiological age-related measures (betas=
0.0002–2.97) [104].

Physiological measures of ageing

Alongside biomarkers measuring internal ageing-related
processes, a number of external measures of physiological
properties of the human body have been associated with
ageing. These include measures of body composition (e.g.,
body-mass index [BMI], waist–hip ratio, bone mineral
density, fat mass, muscle mass), and measures of physio-
logical (e.g., blood pressure, heart rate, grip strength, lung
capacity, walking speed) and sensory function (e.g., visual
acuity, hearing, smell). Generally, these measures con-
sistently show significant, but relatively moderate, correla-
tions with chronological age in healthy people [105–110].
The common approach to measuring these physiological
properties generates a univariate measure. The use of uni-
variate measures to predict chronological age is limited by
the wide variability often seen at any one age, even in
healthy individuals. In this sense, they may be less suitable
as precise ageing biomarkers compared to higher-
dimensional alternatives (e.g., spatial data on brain struc-
ture, DNA methylation status across multiple CpG sites),
which perhaps better capture patterns of variability across
narrow age ranges. Nevertheless, measures of physiological
function have been used to form composite predictive
models of biological age. For example, a multivariate
model of visual and auditory acuity, grip strength, peak
expiratory flow, blood pressure, and BMI was shown to
correlate with chronological age (r= 0.48) [111]. More
recently, physiological measures have been combined with
biochemical laboratory measures of biological age, as dis-
cussed below.
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Interestingly, despite only showing moderate relation-
ships with ageing, physiological measures have been shown
to strongly relate to future health. Taking the example of
grip strength, results consistently support the promise of this
as a marker of general health, robustly relating to disability,
morbidity and mortality [112–114]. This raises a funda-
mental question for biogerontology. Why attempt to mea-
sure biological age per se, when one can go more directly to
important health outcomes? One answer to this question is
that building predictors of the underlying ageing process
using biomarkers might better help us understand the
mechanisms involved, which in turn could lead to treat-
ments and interventions to help improve health during
ageing. However, to properly model cause and effects
within the complex interplay of different ageing processes,
integrating measures from multiple biological systems will
be necessary (see Box 2).

Integrating measures of biological ageing

Given the evident complexity of the ageing process, it is
unlikely that any single measure will be the optimal ageing
biomarker. Furthermore, although there is some generality
in overall biological ageing, there is also system specificity.
This means that change in an individual biomarker may
well not indicate increased risk of disease or functional
decline [115]. Hence, research efforts have focused on
identifying panels of healthy ageing biomarkers [116], to
derive composite measures that combine an array of com-
plementary measures of biological properties. This statis-
tical approach often includes biochemical markers,
including ‘omics data, with indices of body composition
and physiological functioning, and is becoming increasingly
popular [37, 117–122]. However, many of these approaches
still lack specificity and fail to model the heterogeneity in
the biological ageing process within an individual. This
heterogeneity has been conceptualised as the ‘mosaic’ of
ageing [123], whereby different systems, tissues or cells in a
single individual could be undergoing ageing-related
changes at different rates. In some senses, this is the
antithesis of the common-cause hypothesis [124], which
suggests that there is a single underlying factor driving the
phenotypic manifestations of ageing. The truth may well lie
somewhere between these two theories. While there is often
some correlation between different age-related phenotypes
[111, 124], this is not universal. In fact, DNA-methylation
age predictions from different tissues within the same per-
son are not identical [11]. Furthermore, our combined study
of the epigenetic clock and brain-predicted age showed no
correlation between blood-derived DNA-methylation age
and brain-PAD (rho= 0.001). Whereas the absence of a
correlation could be due to measurement error, and is not

unequivocal evidence of no relationship, interestingly we
observed that both DNA-methylation age and brain-PAD
were independently related to mortality risk. Statistically,
brain-PAD explained significantly more variance than
DNA-methylation age (area under curve [AUC]= 0.66 vs.
0.59), although the most explanatory model combined both
measures (AUC= 0.69). This suggests that epigenetic
ageing in blood may not have a causal role in structural
ageing in the brain, or vice versa, yet when individuals
appear older on both counts, mortality risk is heightened.

Our interpretation is that differential ageing rates can
occur within an individual. Importantly, alongside this,
there are latent systemic mechanisms and bi-directional
feedback loops at work [125], meaning that increased
accumulation of age-related damage in one system may
propagate to another. To better understand this, it will be
essential to incorporate data from as many different biolo-
gical systems as possible. However, judicious statistical
approaches will be required to extract meaningful variance
and limit the potentially exponential growth in the number
of variables. These approaches will include feature selection
and dimension reduction methods (e.g., feature importance
metrics and principal component analysis, respectively).
This will help ensure that dimensionality can be equated
across modalities (e.g., when combining brain imaging data,
‘omics data, epigenetic data, and physiological data), so that
undue weight is not placed on a single data source. Fur-
thermore, incorporating latent factors and modelling their
moderating or mediating influences (e.g., using structural
equation modelling) will allow hypotheses regarding cause-
and-effect in biological ageing to be tested, helping us
understand whether abnormal ageing in one organ or tissue
can drive ageing in others.

Some open question about ageing biomarkers remain.
Firstly, what does accelerated ageing mean at different
points over the life course? Our review has focused on
adulthood, with the assumption that appearing biologically
older is negative. The consequences of accelerated ageing
during childhood-to-adulthood development, however, are
unclear and warrant further study. Secondly, why use age-
ing biomarkers when one could directly relate more
straightforward brain structural measure(s) to behaviour or
health outcomes? In fact, our study of brain structure and
mortality showed that measures of grey matter and cere-
brospinal fluid volume were more strongly related to mor-
tality than the brain-ageing biomarker, brain-PAD [32].
However, ageing biomarkers have potential utility that other
measures do not. In addition to the rationale outline in
Box 1, ageing biomarkers allow individuals to be placed in
the context of a wider population, giving an idea of whether
or not their brain, for example, is similar to what is typical
for their age. It also allows some inference about trajectories
to be made from cross-sectional data, whereby a higher
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brain-PAD after a brain injury, for example, suggests that a
negative progressive process has been triggered by that
injury [52]. Biological age also has the potential to be
measured in younger adults, when the confounds of chronic
disease are lower and the likelihood of successful strategies
to reduce age-related morbidity is greater [119]. Finally, the
unit of measurement of ageing biomarkers is intuitive and
can summarise complex information in a comprehendible
manner. For example, a patient may more easily understand
the connotations of having an older-appearing brain or a
faster-running epigenetic clock than they would being told
that their brain is a specific number of mL in volume or that
their CpG sites at specific genomic locations are differen-
tially methylated. Only further studies can settle these open
questions; however, research into the biology of ageing
should be conducted mindful of these issues.

Conclusions

Over recent years, neuroimaging data have been increas-
ingly used to model healthy brain ageing. These efforts
have been conducted in parallel to, but rarely in combina-
tion with, research into ageing biomarkers derived from
measures of blood chemistry, body composition, or phy-
siological functioning. This neuroimaging research has
shown that psychiatric and neurological diseases can
influence the brain-ageing process, as can non-CNS con-
ditions. Alongside this, neuroimaging measures of brain-
predicted age can provide prognostic information
about the progression of individuals to cognitive decline,
dementia, and subsequent death. In our view, this suggests
that some of the long-term downstream sequelae of
different brain diseases may overlap with each other and
with the changes to brain structure seen during ageing.
Potentially, a shift towards a greater emphasis in research
on measuring individual differences, rather than group-
average characteristics, will provide better predictions for
long-term health outcomes in brain diseases and more
generally.

However, whereas neuroimaging studies of brain ageing
are informative and potentially useful in a clinical setting,
basic mechanistic studies should follow, to uncover the
molecular and cellular processes driving these phenotypic
alterations. This should help us better understand whether
fundamentally age-related processes are occurring, or
whether the commonalities between disease and ageing are
in fact epiphenomena. Epiphenomena or not, the brain-
predicted age measure appears to meet all the same criteria
for an ageing biomarker as other measures, such as the
epigenetic clock. Telomere length, despite its long-standing
popularity, appears, in fact, to be less appropriate than
brain-predicted age, either at predicting chronological age

or health outcomes. The long-term goal of biogerontology
should be to integrate the measurements of as many age-
related epiphenomena as possible, using the growing array
of biological measurement techniques available. It is nota-
ble that, in a number of recent reviews of ageing bio-
markers, neuroimaging studies and in fact the brain in
general, are overlooked [69, 126, 127]. To develop robust,
reliable and valid ageing biomarkers that are truly inte-
grative across the human biological system, it is time to
blend biogerontology with neuroscience in efforts to
understand and improve health during ageing.
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