12 research outputs found

    CADRE: the Central Aspergillus Data REpository 2012

    Get PDF
    The Central Aspergillus Data REpository (CADRE; http://www.cadre-genomes.org.uk) is a public resource for genomic data extracted from species of Aspergillus. It provides an array of online tools for searching and visualising features of this significant fungal genus. CADRE arose from a need within the medical community to understand the human pathogen Aspergillus fumigatus. Due to the paucity of Aspergillus genomic resources 10 years ago, the long-term goal of this project was to collate and maintain Aspergillus genomes as they became available. Since our first release in 2004, the resource has expanded to encompass annotated sequence for eight other Aspergilli and provides much needed support to the international Aspergillus research community. Recent developments, however, in sequencing technology are creating a vast amount of genomic data and, as a result, we shortly expect a tidal wave of Aspergillus data. In preparation for this, we have upgraded the database and software suite. This not only enables better management of more complex data sets, but also improves annotation by providing access to genome comparison data and the integration of high-throughput data

    Ensembl Genomes: Extending Ensembl across the taxonomic space

    Get PDF
    Ensembl Genomes (http://www.ensemblgenomes.org) is a new portal offering integrated access to genome-scale data from non-vertebrate species of scientific interest, developed using the Ensembl genome annotation and visualisation platform. Ensembl Genomes consists of five sub-portals (for bacteria, protists, fungi, plants and invertebrate metazoa) designed to complement the availability of vertebrate genomes in Ensembl. Many of the databases supporting the portal have been built in close collaboration with the scientific community, which we consider as essential for maintaining the accuracy and usefulness of the resource. A common set of user interfaces (which include a graphical genome browser, FTP, BLAST search, a query optimised data warehouse, programmatic access, and a Perl API) is provided for all domains. Data types incorporated include annotation of (protein and non-protein coding) genes, cross references to external resources, and high throughput experimental data (e.g. data from large scale studies of gene expression and polymorphism visualised in their genomic context). Additionally, extensive comparative analysis has been performed, both within defined clades and across the wider taxonomy, and sequence alignments and gene trees resulting from this can be accessed through the site

    PRINTS prepares for the new millennium

    No full text
    PRINTS is a diagnostic collection of protein fingerprints. Fingerprints exploit groups of motifs to build characteristic family signatures, offering improved diagnostic reliability over single-motif approaches by virtue of the mutual context provided by motif neighbours. Around 1000 fingerprints have now been created and stored in PRINTS. The September 1998 release (version 20.0), encodes approximately 5700 motifs, covering a range of globular and membrane proteins, modular polypeptides and so on. The database is accessible via the DbBrowser Web Server at http://www.biochem.ucl.ac.uk/bsm/dbbrowser /. In addition to supporting its continued growth, recent enhancements to the resource include a BLAST server, and more efficient fingerprint search software, with improved statistics for estimating the reliability of retrieved matches. Current efforts are focused on the design of more automated methods for database maintenance; implementation of an object-relational schema for efficient data management; and integration with PROSITE, profiles, Pfam and ProDom, as part of the international InterPro project, which aims to unify protein pattern databases and offer improved tools for genome analysis

    PRINTS-S: the database formerly known as PRINTS

    No full text
    The PRINTS database houses a collection of protein family fingerprints. These are groups of motifs that together are diagnostically more potent than single motifs by virtue of the biological context afforded by matching motif neighbours. Around 1200 fingerprints have now been created and stored in the database. The September 1999 release (version 24.0) encodes ~7200 motifs, covering a range of globular and membrane proteins, modular polypeptides and so on. In addition to its continued steady growth, we report here several major changes to the resource, including the design of an automated strategy for database maintenance, and implementation of an object-relational schema for more efficient data management. The database is accessible for BLAST, fingerprint and text searches at http://www.bioinf.man.ac.uk/dbbrowser/PRINTS

    PRINTS and PRINTS-S shed light on protein ancestry

    No full text
    The PRINTS database houses a collection of protein fingerprints. These may be used to make family and tentative functional assignments for uncharacterised sequences. The September 2001 release (version 32.0) includes 1600 fingerprints, encoding ∼10 000 motifs, covering a range of globular and membrane proteins, modular polypeptides and so on. In addition to its continued steady growth, we report here its use as a source of annotation in the InterPro resource, and the use of its relational cousin, PRINTS-S, to model relationships between families, including those beyond the reach of conventional sequence analysis approaches. The database is accessible for BLAST, fingerprint and text searches at http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/

    The 2008 update of the Aspergillus nidulans genome annotation : a community effort

    No full text
    The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions. We present a community-based reannotation of the Aspergillus nidulans genome with the primary goal of increasing the number and quality of protein functional assignments through the careful review of experts in the field of fungal biology
    corecore