2,300 research outputs found

    A PCR-based Genotyping Method to Distinguish Between Wild-type and Ornamental Varieties of Imperata cylindrica

    Get PDF
    Wild-type I. cylindrica (cogongrass) is one of the top ten worst invasive plants in the world, negatively impacting agricultural and natural resources in 73 different countries throughout Africa, Asia, Europe, New Zealand, Oceania and the Americas1-2. Cogongrass forms rapidly-spreading, monodominant stands that displace a large variety of native plant species and in turn threaten the native animals that depend on the displaced native plant species for forage and shelter. To add to the problem, an ornamental variety [I. cylindrica var. koenigii (Retzius)] is widely marketed under the names of Imperata cylindrica 'Rubra', Red Baron, and Japanese blood grass (JBG). This variety is putatively sterile and noninvasive and is considered a desirable ornamental for its red-colored leaves. However, under the correct conditions, JBG can produce viable seed (Carol Holko, 2009 personal communication) and can revert to a green invasive form that is often indistinguishable from cogongrass as it takes on the distinguishing characteristics of the wild-type invasive variety4 (Figure 1). This makes identification using morphology a difficult task even for well-trained plant taxonomists. Reversion of JBG to an aggressive green phenotype is also not a rare occurrence. Using sequence comparisons of coding and variable regions in both nuclear and chloroplast DNA, we have confirmed that JBG has reverted to the green invasive within the states of Maryland, South Carolina, and Missouri. JBG has been sold and planted in just about every state in the continental U.S. where there is not an active cogongrass infestation. The extent of the revert problem in not well understood because reverted plants are undocumented and often destroyed

    Intra-Arterial Chemotherapy of Malignant Diseases

    Get PDF

    Shadowgraphy of transcritical cryogenic fluids

    Get PDF
    The future of liquid-rocket propulsion depends heavily on continued development of high pressure liquid oxygen/hydrogen systems that operate near or above the propellant critical states; however, current understanding of transcritical/supercritical injection and combustion is yet lacking. The Phillips Laboratory and the United Technologies Research Center are involved in a collaborative effort to develop diagnostics for and make detailed measurements of transcritical droplet vaporization and combustion. The present shadowgraph study of transcritical cryogenic fluids is aimed at providing insight into the behavior of liquid oxygen or cryogenic stimulants as they are injected into a supercritical environment of the same or other fluids. A detailed history of transcritical injection of liquid nitrogen into gaseous nitrogen at reduced pressures of 0.63 (subcritical) to 1.05 (supercritical) is provided. Also, critical point enhancement due to gas phase solubility and mixture effects is investigated by adding helium to the nitrogen system, which causes a distinct liquid phase to re-appear at supercritical nitrogen pressures. Liquid oxygen injection into supercritical argon or nitrogen, however, does not indicate an increase in the effective critical pressure of the system

    Systematic Review on the Management of Chronic Constipation in North America

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72642/1/j.1572-0241.2005.50613_2.x.pd

    Current status and advances in esophageal drug delivery technology:influence of physiological, pathophysiological and pharmaceutical factors

    Get PDF
    Diseases affecting the esophagus are common. However, targeted drug delivery to the esophagus is challenging due to the anatomy and physiology of this organ. Current pharmacological treatment for esophageal diseases predominantly relies on the off-label use of drugs in various dosage forms, including those for systemic drug delivery (e.g. oral tablets, sublingual tablets, and injections) and topical drug delivery (e.g. metered dose inhaler, viscous solution or suspension, and endoscopic injection into the esophagus). In general, systemic therapy has shown the most efficacy but requires the use of high drug doses to achieve effective concentrations in the esophagus, which increases the risk of adverse effects and toxicity. Topical drug delivery has enormous potential in improving the way we treat patients with acute and chronic esophageal diseases, especially those requiring drugs that have low therapeutic index and/or significant adverse effects to non-targeted organs and tissues. This review will address the physiological, pathophysiological, and pharmaceutical considerations influencing topical drug delivery in the esophagus. The main conventional (e.g. liquid formulations, orodispersible tablets, lozenges, pastilles, troches, chewing gum) and innovative (e.g. stent-based, film-based, nanoparticulate-based) drug delivery approaches will be comprehensively discussed, along with the developments to improve their effectiveness for topical esophageal drug delivery. The translational challenges and future clinical advances of this research will also be discussed.</p

    The present and future system for measuring the Atlantic meridional overturning circulation and heat transport

    Get PDF
    of the global combined atmosphere-ocean heat flux and so is important for the mean climate of the Atlantic sector of the Northern Hemisphere. This meridional heat flux is accomplished by both the Atlantic Meridional Overturning Circulation (AMOC) and by basin-wide horizontal gyre circulations. In the North Atlantic subtropical latitudes the AMOC dominates the meridional heat flux, while in subpolar latitudes and in the subtropical South Atlantic the gyre circulations are also important. Climate models suggest the AMOC will slow over the coming decades as the earth warms, causing widespread cooling in the Northern hemisphere and additional sea-level rise. Monitoring systems for selected components of the AMOC have been in place in some areas for decades, nevertheless the present observational network provides only a partial view of the AMOC, and does not unambiguously resolve the full variability of the circulation. Additional observations, building on existing measurements, are required to more completely quantify the Atlantic meridional heat transport. A basin-wide monitoring array along 26.5°N has been continuously measuring the strength and vertical structure of the AMOC and meridional heat transport since March 31, 2004. The array has demonstrated its ability to observe the AMOC variability at that latitude and also a variety of surprising variability that will require substantially longer time series to understand fully. Here we propose monitoring the Atlantic meridional heat transport throughout the Atlantic at selected critical latitudes that have already been identified as regions of interest for the study of deep water formation and the strength of the subpolar gyre, transport variability of the Deep Western Boundary Current (DWBC) as well as the upper limb of the AMOC, and inter-ocean and intrabasin exchanges with the ultimate goal of determining regional and global controls for the AMOC in the North and South Atlantic Oceans. These new arrays will continuously measure the full depth, basin-wide or choke-point circulation and heat transport at a number of latitudes, to establish the dynamics and variability at each latitude and then their meridional connectivity. Modeling studies indicate that adaptations of the 26.5°N type of array may provide successful AMOC monitoring at other latitudes. However, further analysis and the development of new technologies will be needed to optimize cost effective systems for providing long term monitoring and data recovery at climate time scales. These arrays will provide benchmark observations of the AMOC that are fundamental for assimilation, initialization, and the verification of coupled hindcast/forecast climate models

    Development and validation of a patient‐assessed gastroparesis symptom severity measure: the Gastroparesis Cardinal Symptom Index

    Get PDF
    SummaryBackground : Patient‐based symptom assessments are necessary to evaluate the effectiveness of medical treatments for gastroparesis.Aim : To summarize the development and measurement qualities of the Gastroparesis Cardinal Symptom Index (GCSI), a new measure of gastroparesis‐related symptoms.Methods : The GCSI was based on reviews of the medical literature, clinician interviews and patient focus groups. The measurement qualities (i.e. reliability, validity) of the GCSI were examined in 169 gastroparesis patients. Patients were recruited from seven clinical centres in the USA to participate in this observational study. Patients completed the GCSI, SF‐36 Health Survey and disability day questions at a baseline visit and again after 8 weeks. Clinicians independently rated the severity of the patients' symptoms, and both clinicians and patients rated the change in gastroparesis‐related symptoms over the 8‐week study.Results: The GCSI consists of three sub‐scales: post‐prandial fullness/early satiety, nausea/vomiting and bloating. The internal consistency reliability was 0.84 and the test–re‐test reliability was 0.76 for the GCSI total score. Significant relationships were observed between the clinician‐assessed symptom severity and the GCSI total score, and significant associations were found between the GCSI scores and SF‐36 physical and mental component summary scores and restricted activity and bed disability days. Patients with greater symptom severity, as rated by clinicians, reported greater symptom severity on the GCSI. The GCSI total scores were responsive to changes in overall gastroparesis symptoms as assessed by clinicians (P = 0.0002) and patients (P = 0.002).Conclusion: The findings of this study indicate that the GCSI is a reliable and valid instrument for measuring the symptom severity in patients with gastroparesis

    Scattering and leapfrogging of vortex rings in a superfluid

    Full text link
    The dynamics of vortex ring pairs in the homogeneous nonlinear Schr\"odinger equation is studied. The generation of numerically-exact solutions of traveling vortex rings is described and their translational velocity compared to revised analytic approximations. The scattering behavior of co-axial vortex rings with opposite charge undergoing collision is numerically investigated for different scattering angles yielding a surprisingly simple result for its dependence as a function of the initial vortex ring parameters. We also study the leapfrogging behavior of co-axial rings with equal charge and compare it with the dynamics stemming from a modified version of the reduced equations of motion from a classical fluid model derived using the Biot-Savart law.Comment: 12 pages, 11 figure
    • 

    corecore