2,158 research outputs found

    Renormalisation group determination of the order of the DNA denaturation transition

    Get PDF
    We report on the nature of the thermal denaturation transition of homogeneous DNA as determined from a renormalisation group analysis of the Peyrard-Bishop-Dauxois model. Our approach is based on an analogy with the phenomenon of critical wetting that goes further than previous qualitative comparisons, and shows that the transition is continuous for the average base-pair separation. However, since the range of universal critical behaviour appears to be very narrow, numerically observed denaturation transitions may look first-order, as it has been reported in the literature.Comment: 6 pages; no figures; to appear in Europhysics Letter

    Tricritical wedge filling transitions with short-ranged forces

    Get PDF
    We show that the 3D wedge filling transition in the presence of short-ranged interactions can be first-order or second order depending on the strength of the line tension associated with to the wedge bottom. This fact implies the existence of a tricritical point characterized by a short-distance expansion which differs from the usual continuous filling transition. Our analysis is based on an effective one-dimensional model for the 3D wedge filling which arises from the identification of the breather modes as the only relevant interfacial fluctuations. From such analysis we find a correspondence between continuous 3D filling at bulk coexistence and 2D wetting transitions with random-bond disorder.Comment: 7 pages, 3 figures, 6th Liquid Matter Conference Proceedings (to be published in J. Phys.: Condens. Matter

    Orientational transition in nanobridges of nematic liquid crystals in slit pores

    Full text link
    In this work, the morphology of nematic capillary nanobridges in slit pores separated by a vertical distance DD will be characterised by Monte Carlo simulations for oblate molecules nematogen modelled by the Gay-Berne potential. Previous studies on droplets show that the molecules are arranged homeotropically at the nematic-vapour interface and form spherical droplets with an annular disclination located in their equatorial plane. In the presence of pores with attractive substrates that favour homeotropic anchoring, the formation of nanobridges characterised by anchoring angles that decrease with increasing particle-substrate interaction intensity is observed. When the orientational field in the nanobridge is analysed, the formation of an annular disclination of topological charge +1/2+1/2 located in the plane perpendicular to the zz-axis that passes through the centre of mass of the nanobridge is observed for small DD. However, when considering higher values of DD, a change to a biaxial orientational profile within the nanobridge is observed, where now the annular disclination is arranged in a plane perpendicular to one direction of the xyxy plane. These results are indicative of the existence of an orientational phase transition for an intermediate DD value between a uniaxial and a biaxial orientational configuration in the capillary nanobridge.Comment: 20 pages, 8 figures. This article has been accepted for publication in Liquid Crystals, published by Taylor & Franci

    Observation of a tricritical wedge filling transition in the 3D Ising model

    Full text link
    In this Letter we present evidences of the occurrence of a tricritical filling transition for an Ising model in a linear wedge. We perform Monte Carlo simulations in a double wedge where antisymmetric fields act at the top and bottom wedges, decorated with specific field acting only along the wegde axes. A finite-size scaling analysis of these simulations shows a novel critical phenomenon, which is distinct from the critical filling. We adapt to tricritical filling the phenomenological theory which successfully was applied to the finite-size analysis of the critical filling in this geometry, observing good agreement between the simulations and the theoretical predictions for tricritical filling.Comment: 5 pages, 3 figure

    Fluid adsorption near an apex: Covariance between complete and critical wetting

    Get PDF
    Critical wetting is an elusive phenomenon for solid-fluid interfaces. Using interfacial models we show that the diverging length scales, which characterize complete wetting at an apex, precisely mimic critical wetting with the apex angle behaving as the contact angle. Transfer matrix, renormalization group (RG) and mean field analysis (MF) shows this covariance is obeyed in 2D, 3D and for long and short ranged forces. This connection should be experimentally accesible and provides a means of checking theoretical predictions for critical wetting.Comment: 4 pages, 1 figure, submitted to Physical Review Letter

    Interfacial structure at a two-dimensional wedge filling transition: Exact results and a renormalization group study

    Get PDF
    nterfacial structure and correlation functions near a two-dimensional wedge filling transition are studied using effective interfacial Hamiltonian models. An exact solution for short range binding potentials and results for Kratzer binding potentials show that sufficiently close to the filling transition a new length scale emerges and controls the decay of the interfacial profile relative to the substrate and the correlations between interfacial positions above different positions. This new length scale is much larger than the intrinsic interfacial correlation length, and it is related geometrically to the average value of the interfacial position above the wedge midpoint. The interfacial behavior is consistent with a breather mode fluctuation picture, which is shown to emerge from an exact decimation functional renormalization group scheme that keeps the geometry invariant

    Density functional theory study of the nematic-isotropic transition in an hybrid cell

    Get PDF
    We have employed the Density Functional Theory formalism to investigate the nematic-isotropic capillary transitions of a nematogen confined by walls that favor antagonist orientations to the liquid crystal molecules (hybrid cell). We analyse the behavior of the capillary transition as a function of the fluid-substrate interactions and the pore width. In addition to the usual capillary transition between isotropic-like to nematic-like states, we find that this transition can be suppressed when one substrate is wet by the isotropic phase and the other by the nematic phase. Under this condition the system presents interface-like states which allow to continuously transform the nematic-like phase to the isotropic-like phase without undergoing a phase transition. Two different mechanisms for the disappearance of the capillary transition are identified. When the director of the nematic-like state is homogeneously planar-anchored with respect to the substrates, the capillary transition ends up in a critical point. This scenario is analogous to the observed in Ising models when confined in slit pores with opposing surface fields which have critical wetting transitions. When the nematic-like state has a linearly distorted director field, the capillary transition continuously transforms in a transition between two nematic-like states.Comment: 31 pages, 10 figures, submitted to J. Chem. Phy

    Flue gas adsorption by single-wall carbon nanotubes: A Monte Carlo study

    Get PDF
    Adsorption of flue gases by single-wall carbon nanotubes (SWCNT) has been studied by means of Monte Carlo simulations. The flue gas is modeled as a ternary mixture of N2, CO2, and O2, emulating realistic compositions of the emissions from power plants. The adsorbed flue gas is in equilibrium with a bulk gas characterized by temperature T, pressure p, and mixture composition.We have considered different SWCNTs with different chiralities and diameters in a range between 7 and 20 Å. Our results show that the CO2 adsorption properties depend mainly on the bulk flue gas thermodynamic conditions and the SWCNT diameter. Narrow SWCNTs with diameter around 7 Å show high CO2 adsorption capacity and selectivity, but they decrease abruptly as the SWCNT diameter is increased. For wide SWCNT, CO2 adsorption capacity and selectivity, much smaller in value than for the narrow case, decrease mildly with the SWCNT diameter. In the intermediate range of SWCNT diameters, the CO2 adsorption properties may show a peculiar behavior, which depend strongly on the bulk flue gas conditions. Thus, for high bulk CO2 concentrations and low temperatures, the CO2 adsorption capacity remains high in a wide range of SWCNT diameters, although the corresponding selectivity is moderate.We correlate these findings with the microscopic structure of the adsorbed gas inside the SWCNTs.Peer reviewe

    Non-locality and short-range wetting phenomena

    Get PDF
    We propose a non-local interfacial model for 3D short-range wetting at planar and non-planar walls. The model is characterized by a binding potential \emph{functional} depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tube-like fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories, and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong non-perturbative influence of non-locality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.Comment: 4 pages, 2 figures, accepted for publication in Phys. Rev. Let

    Surface and capillary transitions in an associating binary mixture model

    Get PDF
    We investigate the phase diagram of a two-component associating fluid mixture in the presence of selectively adsorbing substrates. The mixture is characterized by a bulk phase diagram which displays peculiar features such as closed loops of immiscibility. The presence of the substrates may interfere the physical mechanism involved in the appearance of these phase diagrams, leading to an enhanced tendency to phase separate below the lower critical solution point. Three different cases are considered: a planar solid surface in contact with a bulk fluid, while the other two represent two models of porous systems, namely a slit and an array on infinitely long parallel cylinders. We confirm that surface transitions, as well as capillary transitions for a large area/volume ratio, are stabilized in the one-phase region. Applicability of our results to experiments reported in the literature is discussed.Comment: 12 two-column pages, 12 figures, accepted for publication in Physical Review E; corrected versio
    corecore