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Interfacial structure at a two-dimensional wedge filling transition: exact results and a

renormalization group study
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Interfacial structure and correlation functions near a two-dimensional (2D) wedge filling transition
are studied using effective interfacial Hamiltonian models. An exact solution for short range bind-
ing potentials and results for Kratzer binding potentials show that sufficiently close to the filling
transition a new length scale emerges and controls the decay of the interfacial profile relative to
the substrate and the correlations between interfacial positions above different positions. This new
length scale is much larger than the intrinsic interfacial correlation length, and it is related geomet-
rically to the average value of the interfacial position above the wedge midpoint. The interfacial
behavior is consistent with a breather mode fluctuation picture, which is shown to emerge from an
exact decimation functional renormalization group scheme that keeps the geometry invariant.
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I. INTRODUCTION

Fluid adsorption in wedge and cone-shaped non-planar
geometries has attracted much attention in the last few
years [1, 2, 3, 4, 5]. Geometry plays an important role
in the surface phase diagram, and new phase transitions
as the filling transition arise. Thermodynamic considera-
tions [6, 7, 8] predict that the gas-liquid interface unbinds
from the wedge before the wetting temperature Tw corre-
sponding to the substrates. So, the wedge is completely
filled by liquid for temperatures higher than the filling
temperature Tf < Tw, where Tf is given by the condi-
tion:

θ(Tf ) = α (1)

and θ(T ) is the temperature-dependent contact angle of
a liquid drop on the planar substrate. Capillary wave
models show that the filling transition can be critical
even though the wetting transition corresponding to the
substrate is first order, and that interfacial fluctuations
are enhanced with respect to the wetting case [3, 4]. For
the 2D wedge filling transition in shallow wedges charac-
terized by an small angle α respect to the x axis (see
below), there exists a remarkable covariance relation-
ship between the wedge midpoint probability distribution
function P 1

w(l0) in the filling fluctuation regime and the
planar 1−point probability distribution function P 1

π (l0)
characteristic of a strong-fluctuation regime critical wet-
ting transition:

P 1
w(l0; θ, α) = P 1

π (l0; θ − α) (2)

where θ is the contact angle of the liquid droplet on the
substrate. This expression establishes a connection be-
tween two apparently unrelated phenomena, the deep ori-
gin of which is still elusive. The covariance relationship
has been observed also in acute wedges [9], Ising model
exact calculations [10] and computer simulations [11]. Al-
though the covariance relationship is restricted to the in-
terfacial behavior above the wedge midpoint, some other

quantities like the local susceptibility, which is related to
the 2−point correlation function, also showed a modified
covariance relationship [5]. Consequently, it is interesting
to see if the covariance extends to higher-order probabil-
ity distribution functions.

In this paper we study the structure of the interfacial
profile and correlations for 2D wedge filling phenomena.
Exact results for the capillary wave effective Hamiltonian
theory in the filling fluctuation regime are obtained as an
extension of the analysis presented in Ref. [12]. The ex-
act results show the appearance of a new length scale ξF
across the wedge close to the critical filling transition.
This scale controls the decay of the interfacial profile,
local roughness and correlations, and is related geomet-
rically to the wedge midpoint average interface position.
For the local properties, we found a very interesting re-
lationship between the wedge 1−point probability distri-
bution function and the corresponding functions in the
planar geometry, which can enlighten the origin of the
wedge covariance.

Regarding the two-point correlation functions, we
found a confirmation in the scaling limit of the breather

mode picture [3, 4], which states that the interface is ef-
fectively infinitely stiff in the filled region and is driven
by fluctuations of the wedge midpoint interfacial posi-
tion, i.e. critical effects at 2D wedge filling arise simply
from local translations in the height of the flat, filled in-
terfacial region.

Finally, we explain the critical behavior of the fill-
ing transition in the functional renormalization group
approach. As the geometry is fundamental in the un-
derstanding of the critical filling transition, we choose
a scheme that leaves the wedge geometry invariant.
We show that the breather mode picture emerges as a
straightforward consequence. The predictions for the
critical behavior are in complete agreement with exact
solutions.

Our paper is organized as follows. In Section II we
describe the continuous transfer matrix formalism and
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FIG. 1: Schematic illustration of a typical interfacial configu-
ration in the wedge geometry. The relevant correlation length
scales ξx and ξ⊥(x) are also highlighted. Other notation is de-
fined in the text.

the definition of the wedge n−point interfacial probabil-
ity distribution functions. We apply this formalism to
the case of contact binding potentials in Section III and
in particular calculate analytically the 1−point proba-
bility distribution function and the 2−point correlation
functions. Some results for Kratzer binding potentials
will be presented in Section IV. In Section V we analyse
the breather mode picture and derive a relation between
two important scaling functions. Section VI is devoted
to the development of a renormalization group theory of
2D critical filling transition, which requires a generaliza-
tion of previous approaches for critical wetting. A brief
conclusion is presented in Section VII.

II. THE FORMALISM

Consider a two-dimensional wedge formed by the in-
tersection of two equal planar substrates at angles ±α to
the horizontal (see Fig.1). We suppose that the wedge is
in contact with a bulk vapor phase at saturation condi-
tions, i.e. in equilibrium with the liquid phase, and the
substrates preferentially adsorb the liquid phase. Our
starting point is the effective interfacial Hamiltonian for
shallow wedges:

βH [l] =

∫ X/2

−X/2

dx

{

Σ

2

(

dy

dx

)2

+W (y(x) − α|x|)
}

(3)

where y(x) is the interfacial local height respect to the
horizontal, X is the interfacial horizontal length, kBTΣ
is the interfacial stiffness, kBTW (l) is the local binding
potential and β ≡ 1/kBT . We impose periodic boundary
conditions at the ends, i.e. y(−X/2) = y(X/2).

Defining the local relative height between the vapor-
liquid interface and the substrate l(x) = y(x) − α|x|,

Eq.(3) can be rewritten as [2]:

βH [l] = X
Σα2

2
+

∫ X/2

−X/2

dx

{

Σ

2

(

dl

dx

)2

+ Σα

(

dl

dx

)

(2H(x) − 1) +W (l(x))

}

(4)

where H(x) is the Heaviside step function. Integrating
by parts to eliminate the term proportional to (dl/dx),
the effective Hamiltonian can be expressed as

βH [l] = X
Σα2

2
+ 2Σαl(X/2)− 2Σαl(0)

+

∫ X/2

−X/2

dx

{

Σ

2

(

dl

dx

)2

+W (l(x))

}

(5)

The first two terms in the equation are irrelevant con-
stants for the interfacial properties in the wedge, the
third one is the origin of the boost factor that decreases
the pinning effect of the binding potential [2], and the
fourth one corresponds to the effective Hamiltonian of an
equivalent planar interface problem. As the probability
distribution of an interfacial configuration is proportional
to exp(−βH) we can relate the wedge and planar prob-
ability distributions in a straightforward way. In partic-
ular, the n−point wedge correlation functions can be re-
lated to (n+1)−point correlation functions in the planar
case by adding the wedge midpoint position. However,
the presence of the boost factor will alter significally the
behavior of the wedge correlation functions with respect
to their planar counterparts.

Our approach is based on a standard application of
transfer matrix methods [13]. The partition function
Zπ(l1, l2, x1, x2) of the interface with fixed endpoints
(x1, l1) and (x2, l2) with x2 > x1 in presence of a pla-

nar substrate is defined as the following path integral:

Zπ(l1, l2, x1, x2) ≡ Zπ(l1, l2;x2 − x1) =

=

∫

Dl exp

(

−
∫ x2

x1

dx

[

Σ

2

(

dl

dx

)2

+W (l)

])

(6)

The partition function Eq. (6) is the solution of the
following Schrödinger equation:

[

∂

∂x
+W (l2) −

1

2Σ

∂2

∂l22

]

Zπ(l1, l2;x) = 0 (7)

with the initial condition:

Zπ(l1, l2; 0) = δ(l2 − l1) (8)

where δ(x) is the Dirac delta function. Formally, the
partition function can be expressed as:

Zπ(l1, l2;x) =
∑

i

ψ∗
i (l1)ψi(l2) exp(−Eix) (9)
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where ψ(l) and Ei are the eigenfunctions and eigenvalues
of the time-independent Schrödinger equation:

− 1

2Σ
ψ

′′

n(l) +W (l)ψn(l) = Enψn(l) (10)

with appropriate boundary conditions. In the thermo-
dynamic limit Zπ ∼ exp(−βfX) as X → ∞, where
βf = Σ(cos θ−1) is the excess free energy per interfacial
length. Consequently, Eq. (9) implies that E0 = βf , so
that in the low contact angle limit, E0 ≈ −Σθ2/2.

The n-point distribution functions can be obtained in
terms of Zπ(l1, l2;x) as:

Pπ(1; . . . ;n) = lim
X→∞

∏n
i=0 Zπ(li, li+1;xi+1 − xi)

Zπ(l−X/2, lX/2;X)

= ψ0(l1)ψ
∗
0(ln)

n−1
∏

i=1

Zπ(li, li+1;xi+1 − xi)e
E0(xi+1−xi)(11)

where i ≡ (li;xi), xn+1 = −x0 ≡ X/2, and l0 = ln+1 =
lX/2. For n = 1, Pπ(i) ≡ |ψ0(li)|2. From Eqs. (11) and
(9) it is clear that if the distance between two subsets
{x1, . . . , xm} and {xm+1, . . . , xn} is much greater than
the planar correlation length ξ‖ ≡ 1/(E1 − E0) (with E1

the first excited state eigenvalue), the distribution func-
tion factorizes and the two subsets become uncorrelated.

The n-point wedge distribution functions Pw(1; . . . ;n)
can be expressed, in general, in terms of (n + 1)−point
planar distribution functions. So, for a set {x−m < . . . <
x−1 < 0 < x1 < . . . xn}, they can be expressed as:

Pw(−m; . . . ;n) =

∫ ∞

0

dl0
e2Σαl0

〈0|e2Σαl0 |0〉Pπ(−m; . . . ;

−1; 0; 1; . . . ;n) =
Pw(−1; 1)Pπ(−m; . . . ;n)

Pπ(−1; 1)
(12)

where 〈n|f(l)|m〉 ≡
∫∞

0
dlψn(l)f(l)ψ∗

m(l). If 0 ≤ x1 <
. . . < xn, the expression of Pw(1; . . . ;n) is slightly sim-
pler:

Pw(1; . . . ;n) =

∫ ∞

0

dl0
e2Σαl0

〈0|e2Σαl0 |0〉Pπ(0; 1; . . . ;n)

=
Pw(1)Pπ(1; . . . ;n)

Pπ(1)
(13)

A similar expression is found if x1 < . . . < xn ≤ 0.
Finally, if x = 0 is included in the x set, the wedge n-
point distribution function reduces to:

Pw(−m; . . . ;n) =
e2Σαl0

〈0|e2Σαl0 |0〉Pπ(−m; . . . ;n) (14)

Although this approach is general for arbitrary binding
potentials, we will restrict ourselves to some special cases.
The first case will be contact potentials, in which W (l) =
0 for l > 0, W (l) = +∞ for l < 0 and at the wall the
eigenfunctions fulfill the boundary condition [13]:

∂

∂l
lnψ(l)

∣

∣

∣

∣

∣

l=0

= −τ (15)

where τ is proportional to the deviation from the crit-
ical wetting temperature. For τ > 0 the contact an-
gle is related to τ via τ = Σθ [13]. These potentials
can be understood as the limiting case of a square-well
binding potential when the well width tends to zero. Its
importance is threefold. First, this case corresponds to
the filling fluctuation regime, that previous studies show
to be the relevant one for potentials which decay faster
than 1/l. Secondly, there is an analytical expression for
Zπ(l1, l2;x) [13], given by:

Zπ(l1, l2;x) =

√

Σ

2πx

(

e−
Σ(l2−l1)2

2x + e−
Σ(l1+l2)2

2x

)

+ τe
τ2x
2Σ −τ(l1+l2)erfc

(

√

Σ

2πx
(l1 + l2) − τ

√

x

2Σ

)

(16)

Finally, this case can be compared to more microscopic
results, like the exact solutions of the interfacial proper-
ties of the corner filling of an Ising model.

Another interesting case is the Kratzer binding poten-
tial [14]:

W (l) = −φθ
l

+
w

l2
(17)

where φ = (1 +
√

1 + 8Σw)/2 and we assume Dirichlet
boundary conditions at the origin. Previous studies indi-
cate that this class of binding potentials corresponds to
the marginal case between the mean-field and fluctuation
dominated regimes for the critical filling transition. The
Laplace transform of Zπ(l1, l2;x), Z̃π(l1, l2, E), is given
by [14]:

Z̃π(l1, l2, E) =

∫ ∞

0

dx eExZπ(l1, l2;x)

=

√

E0

E Γ

[

φ

(

1 −
√

E0

E

)]

θ Γ [2φ]
W

φ

√

E0
E

,φ−1/2

(√
−8ΣEl>

)

× M
φ
√

E0
E

,φ−1/2

(√
−8ΣEl<

)

(18)

where E0 = −Σθ2/2, l> = max(l1, l2), l< = min(l1, l2),
Γ(x) is the gamma function, and finally Mκ,m(z) and
Wκ,m(z) are Whittaker functions, related to confluent
hypergeometric functions.

III. EXACT RESULTS FOR CONTACT

BINDING POTENTIALS

In this Section we will obtain and analyze some rel-
evant wedge distribution functions for contact binding
potentials. In particular, we will revisit the 1−point dis-
tribution function (considered previously by our group
[12]) and the 2−point height-height correlation function
between the midpoint and any other interfacial posi-
tions. Related quantities as the average interfacial profile
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〈l(x)〉w , the local roughness ξ⊥(x) and the correlation
length across the wedge ξx (see Fig.1) will be also ob-
tained.

Some results are already known for the 1−point distri-
bution functions. The probability distribution function
for the midpoint x = 0 interfacial height is given by [2]:

P 1
w(l0; θ, α) ≡ Pw(l0, 0) = 2Σ(θ − α)e−2Σ(θ−α)l0 (19)

that verifies the remarkable covariance relationship Eq.
(2).

For arbitrary x ≥ 0 the 1−point distribution function
has the expression [12]:

Pw(l, x) = Σθe−2Σθlerfc

(

−
√

Σx

2
θ +

√

Σ

2x
l

)

+ Σ(θ − α)e2Σ(α−θ)le2Σαx(α−θ)

× erfc

(

√

Σx

2
(θ − 2α) −

√

Σ

2x
l

)

− Σαe−2Σαle2Σαx(α−θ)

× erfc

(

√

Σx

2
(θ − 2α) +

√

Σ

2x
l

)

(20)

For x < 0, we have the symmetry Pw(l, x) = Pw(l,−x),
so hereafter we will consider only the case x ≥ 0.

The moments 〈ln(x)〉w can be obtained after some al-
gebra. The average interfacial position profile reads:

〈l(x)〉w =
1

2Σθ
+

√

x

2πΣ
e−

Σθ2

2 x

+

[

θ

θ − α
− θ

α

]

e2Σαx(α−θ)

4Σθ
erfc

(

√

Σx

2
(θ − 2α)

)

+

[

1

4Σθ

(

θ

θ − α
+
θ

α
− 2

)

− θx

2

]

erfc

(
√

Σθ2

2
x

)

(21)

The wedge excess adsorption Γw measured with respect
to the planar case can be obtained as:

Γw = 2(ρl − ρg)

∫ ∞

0

(

〈l(x)〉w − 1

2Σθ

)

dx

=
ρl − ρg

2Σ2

[

1

θ(θ − α)2
− 1

θ3

]

(22)

where ρg and ρl are the coexistence densities of the va-
por and liquid phases, respectively. Close to the filling
transition (θ → α), Γw ∼ 2(ρl − ρg)〈l(0)〉2w/α.

The roughness profile ξ⊥(x) (see Fig.1) is defined as

√

〈l2(x)〉w − 〈l(x)〉2w , where 〈l2(x)〉w is given by:

〈l2(x)〉w =
1

2Σ2θ2

−
(

− 1

Σ(θ − α)
− 1

Σα
+

1

Σθ
+ θx

)

√

x

2πΣ
e−

Σθ2

2 x

+

[

θ2

(θ − α)2
− θ2

α2

]

e2Σαx(α−θ)

4Σ2θ2
erfc

(

√

Σx

2
(θ − 2α)

)

−
[

1

4Σ2θ2

(

− θ2

(θ − α)2
− θ2

α2
+ 2

)

− θx

2Σ

(

α

θ − α

− θ − α

α

)

+
x2θ2

2

]

erfc

(
√

Σθ2

2
x

)

(23)

For general n, the following expression can be obtained
by induction:

〈ln(x)〉w = 〈ln〉π
[

1 +
1

2

(

θn

(θ − α)n
− θn

αn

)

e2Σαx(α−θ)

×erfc

(

√

Σx

2
(θ − 2α)

)]

+ Pn(x)

√

x

2πΣ
e−

Σθ2

2 x

+Qn(x)erfc

(
√

Σθ2

2
x

)

(24)

where 〈ln〉π = n!/(2Σθ)n and Pn(x) and Qn(x) are poly-
nomials in x of order n− 1 and n, respectively.

These expressions are only valid if θ > α (for smaller
values of θ the interface is unbound from the wedge). For
x→ 0, Eq. (20) reduces to Eq. (19). On the other hand,
for |x| → ∞, Pw(l, x) decay to Pπ(l) ≡ 2Σθ exp(−2Σθl).
However, the scale over which this decay occurs depends
on the value of α. If θ ≥ 2α, this scale is the planar cor-
relation length ξ‖ ≡ 2/Σθ2. However, if α < θ < 2α, the
decay length is ξF ≡ 1/2Σα(θ − α) (our notation differs
slightly from the one used in Ref. [12]). Note that ξF is
always larger than ξ‖, and diverges on approaching the
filling transition. On the other hand, ξF is related ge-
ometrically with the wedge midpoint average interfacial
height via ξF = 〈l(0)〉w/α ≈ 〈l(0)〉w/ tanα for small α.

It is amusing to note that Eq. (20) verifies the following
differential relation:

Pw(l, x) + ξF

(

∂Pw(l, x)

∂x

)

= Lπ(l, x)

≡ Pπ(l) +
1

θ

∂

∂x

∫ ∞

0

dl0l0Pπ(l0, 0; l, x) (25)

where Lπ(l, x) is for contact binding potentials:

Lπ(l, x) = Σθe−2Σθlerfc

(

−
√

Σx

2
θ +

√

Σ

2x
l

)

+2

√

Σ

2πx
e
−
(√

Σx
2 θ+

√
Σ
2x

l
)2

(26)
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Note that the RHS of Eq. (25) depends only on the pla-
nar properties and, consequently, is independent of α. It
can be shown that Eq. (25) is obtained for any binding
potential if the LHS is expanded in powers of α and trun-
cated at the lowest order term, which is independent of α.
Consequently, this differential field equation implies an
infinite hierarchy of integro-differential relationships for
the 2−point planar correlation function. Alternatively
Eq. (25) provides an elegant route to the calculation of
any moment of the interfacial height. Multiplying Eq.
(25) by arbitrary power of l and integrating over all the
possible values of l, the following differential equations
are obtained:

〈ln(x)〉w + ξF
d〈ln(x)〉w

dx
=

∫ ∞

0

dl lnLπ(l, x)

≡ 〈ln〉π +
1

θ

d

dx
〈l(0)ln(x)〉π (27)

where 〈. . .〉w and 〈. . .〉π mean the average with the wedge
and planar distribution function, respectively. The RHS
of Eq. (27) depends only in the planar distribution func-
tions, and consequently decays to 〈ln〉π for distances
larger than ξ‖. Close to the filling transition, ξF ≫ ξ‖,
and we can approximate Eq. (27) for x & ξF by:

〈ln(x)〉w + ξF
d〈ln(x)〉w

dx
≈ 〈ln〉π (28)

that has as a solution 〈ln(x)〉w ≈ 〈ln〉π + (〈ln(0)〉w −
〈ln〉π) exp(−x/ξF ). Taking into account that 〈ln(0)〉w ≫
〈ln〉π close to the filling transition, the approximate
solution can be simplified even further to 〈ln(x)〉w ≈
〈ln(0)〉w exp(−x/ξF ) (which is equivalent to set 〈ln〉π = 0
in Eq. (28) ). These findings are obviously in agreement
with Eq. (24) and the asymptotic behavior of Pw(l, x)
for large x and θ < 2α [12].

It is interesting to note that the moments obtained
from the actual 1−point distribution function are the
only solutions of Eq. (27) that: (a) decay exponentially
within a length scale ξ‖ for 0 < α/θ ≪ 1 and x → ∞;
(b) are analytical as a function of α for 0 ≤ α < θ, in
particular at the disorder point. The existence of the
relationship Eq. (25), from which covariance for the mo-
ments of the interfacial position profile at x = 0 can be
inferred provided the (a) and (b) regularity conditions
are fulfilled, leads us to speculate on the existence of a
hidden symmetry of the hamiltonian that explains wedge
covariance. However, the nature of such a symmetry (if
any) is completely unknown.

In the mean-field approximation, the average interfa-
cial position profile for binding potentials characterized
by a critical exponent αs = 0 fulfills the following gener-
alized covariance relationship [15]:

l(x) = lπ

(

θ −
∣

∣

∣

∣

dl(x)

dx

∣

∣

∣

∣

)

(29)

where l(x) represents the (averaged) interfacial position
at x, and lπ(θ) is the planar (averaged) interfacial po-

0 4 8 12 16
|x|

0

4

8

12

l(x)

h/J= 0.595
h/J = 0.597
h/J = 0.599

FIG. 2: Comparison between 〈l(x)〉w obtained in Ref. [11]
by Ising model computer simulations for boundary magnetic
fields h/J = 0.595 (circles), h/J = 0.597 (squares) and h/J =
0.599 (diamonds); and the approximation given by Eq. (30)
(continuous lines). The Ising model parameters are: α =
π/4, the temperature T = Tc/2 and the bulk magnetic field
Hbulk = 0. The boundary magnetic field at the critical filling
is hc/J = 0.606. The lengths |x| and 〈l(x)〉w are measured in
lattice spacing units. See text for explanation.

sition for a given contact angle θ. Making the substi-
tution l(x) → 〈l(x)〉w , it is clear from Eq. (21) that
this extended covariance is not verified for x 6= 0 (even
asymptotically when x → 0 or |x| → ∞). However, it is
remarkable that there exists an analogous to Eq. (29),
given by Eq. (27) for n = 1.

To finish our discussion about the 1−point distribution
functions, we compare our results with computer simula-
tions of the 2D Ising model [11]. Close to the filling tran-
sition point, we expect that the approximate solution to
Eq. (28) for n = 1 will be generalized for arbitrary α to:

〈l(x)〉w ≈ 〈l〉π
cosα

+

(

〈l(0)〉w − 〈l〉π
cosα

)

e−x/ξF (30)

where now ξF is defined as 〈l(0)〉w/ tanα. We have tested
this approximation with the simulation results reported
in Ref. [11] (see Fig. 2). The symbols correspond to the
simulation data obtained for an square 64× 64 Ising lat-
tice with zero bulk magnetic field and boundary magnetic
fields +h for the boundary rows ending at the lower left
corner, and −h for the remaining boundary rows. In this
geometry, α = π/4. The temperature is set to T = Tc/2,
where Tc is the bulk critical temperature. For this tem-
perature and α the critical filling transition occurs at
hc/J = 0.606. Fig. 2 shows the computer simulation
results for h/J = 0.595, 0.597 and 0.599. We have no
direct estimation of 〈l〉π. However, we have obtained
〈l〉π by fitting the simulation data with |x| ≤ 16 lattice
spacings (in order to minimize the effect of the upper
left and lower right heterogeneous wedges) to the Eq.
(30). The best fitting values are, in lattice spacing units,
〈l〉π = 0.314, 0.335, 0.436 for h/J = 0.595, 0.597, 0.599,
respectively. As it can be seen, the fitting to the simula-
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tion data is quite good, despite the crude approximations
involved in Eq. (30).

Now we want to characterize the 2−point correlations,
in particular the correlations between the interfacial posi-
tion above the wedge midpoint and the corresponding to
an arbitrary x, which are given by the following function:

〈(l(x) − 〈l(x)〉w)(l(0) − 〈l(0)〉w)〉w ≡

〈l(x)l(0)〉w − 〈l(x)〉w〈l(0)〉w =
1

2Σ

(

∂〈l(x)〉w
∂α

)

(31)

Substituting Eq. (21) into Eq. (31), we obtain:

〈l(x)l(0)〉w − 〈l(x)〉w〈l(0)〉w =

√

x

2πΣ

(2α− θ)e−
Σθ2

2 x

2Σα(θ − α)

+
1

8Σ2θ2

(

θ2

(θ − α)2
− θ2

α2

)

erfc

(
√

Σθ2

2
x

)

+
e2Σαx(α−θ)

8Σ2θ

[

θ

(θ − α)2
+

θ

α2

+
2Σ(θ − 2α)2θx

α(θ − α)

]

erfc

(

√

Σx

2
(θ − 2α)

)

(32)

This function decays exponentially to zero for large x.
However, the characteristic correlation length ξx (see Fig.
1) depends on α: it is ξ‖ for θ > 2α and ξF if α < θ < 2α.
Consequently, the disorder point not only introduce a
new length scale for the average interfacial profile, but
also for the interfacial fluctuations.

IV. RESULTS FOR THE KRATZER BINDING

POTENTIALS

The Kratzer binding potential (see Eq. (17)) is the
marginal case between the filling mean-field and filling
fluctuation regimes. For such potentials the wedge mid-
point probability distribution function also obeys wedge
covariance Eq. (2):

P 1
w(l0; θ, α) =

[2Σ(θ − α)]2φ+1l2φ
0

Γ[2φ+ 1]
exp(−2Σ(θ − α)l0)

= P 1
π (l0; θ − α)(33)

It is possible to extend the transfer analysis and obtain
exact results for other quantities of interest. Consider,
for example, the 1−point probability distribution func-
tion Pw(l, x). The Laplace transform P̃w(l;E) can be
expressed as:

P̃w(l;E) =

∫ ∞

0

dl0e
Σ(2α−θ)l0 (2Σθ)2φ+1(l0l)

φ

Γ[2φ+ 1]

× exp(−Σθl)Z̃π(l0, l, E − Σθ2/2) (34)

where Z̃π(l0, l, E) is given by Eq. (18). This reduces to:

P̃w(l;E) =
lφ(2Σθ)2φ+1e−Σθl

θΓ[2φ+ 1]Γ[2φ]
κΓ [φ (1 − κ)]

×
{

∫ ∞

0

lφ0 eΣ(2α−θ)l0Wκφ,φ− 1
2

(

2Σθl0
κ

)

Mκφ,φ− 1
2

(

2Σθl

κ

)

−
∫ l

0

lφ0 eΣ(2α−θ)l0

×
[

Wκφ,φ− 1
2

(

2Σθl0
κ

)

Mκφ,φ− 1
2

(

2Σθl

κ

)

−Wκφ,φ− 1
2

(

2Σθl

κ

)

Mκφ,φ− 1
2

(

2Σθl0
κ

)

]}

(35)

where κ ≡ 1/
√

1 − 2E/Σθ2. The poles of P̃w(l;E) in
the E real positive semi-axis are the characteristic in-
verse length scales across the wedge of Pw(l, x). Since
the second integral is over a finite interval and the in-
tegrand does not diverges in that range, no new length
scale emerges from it. For the first integral, we take into
account that [16]:

∫ ∞

0

xν−1 exp(−px)Wκ,µ(ax)dx =

Γ[µ+ ν + 1/2]Γ[ν − µ+ 1/2]aµ+ 1
2

Γ[ν − κ+ 1](p+ a/2)µ+ν+ 1
2

×2F1

(

µ+ ν +
1

2
, µ− κ+

1

2
; ν − κ+ 1;

p− a
2

p+ a
2

)

(36)

where 2F1(a, b, c;x) is a hypergeometric function. If θ >
2α, the integral does not introduce any new characteristic
length . However, for α < θ < 2α a new singularity
emerges for Σ(θ−2α)+Σθ/κ = 0, i.e. E = 2Σα(θ−α) =
1/ξF . Remarkably, ξF has the same expression as for
contact binding potentials, and is proportional (but not
equal) to 〈l(0)〉w/α.

From this it follows that the non-thermodynamic sin-
gularity occuring at θ = 2α mentioned in the previous
Section is not specific to contact potentials. A simple ge-
ometrical argument given in Ref. [12] explains why. The
most relevant interfacial fluctuations are those where the
interface leaves the substrate with a contact angle θ (rel-
ative to the tilted wall) at an arbitrary substrate point.
If θ > 2α, the other side of the wedge does not play any
role and we can anticipate that the only length scale that
controls the 1−point distribution decay is ξ‖. However,
if θ < 2α, the interface will eventually reach the other
substrate, and consequently we can expect the geometry
to play an important role leading to the emergence of
a new length scale. Formally, this non-thermodynamic
singularity occurs when the following integrals that arise
from the spectral expansion of Zπ(l1, l2;x):

∫ ∞

0

ψ0(l) exp(2Σαl)ψ∗
p(l) (37)
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become ill-defined. There, ψp(l) are the scattering eigen-
states with eigenvalues E = p2/2Σ and ψ0(l) is the
ground eigenstate. A straightforward WKB asymptotic
analysis for the eigenfunctions shows that, for p 6= 0, the
integrals given by Eq. (37) become ill-defined for θ < 2α
for quite arbitrary choices of binding potential.

As θ/α decreases, ξF exceeds the intrinsic interfacial
length scales 1/(Ei − E0), and becomes the true corre-
lation length across the wedge ξx at an another disor-
der point when ξF = ξ‖ (recall that ξx = ξ‖ for θ/α
larger than the value at the disorder point). For the case
of contact binding potentials both non-thermodynamic
singularities occur the same value θ = 2α. However,
in general, the non-thermodynamic singularities are dis-
tinct provided there are at least two bounded eigenstates
of Eq. (10). For the pure Coulomb case (φ = 1) the
second disorder point occurs at θ = 4α/3.

Close to the new singularity ξ−1
F we found that:

Pw(l;E) ∼ 1

(ξ−1
F − E)1+

2φα
2α−θ

EξF → 1− (38)

so Pw(l, x) behaves asymptotically for large values of x

as x
2φα

2α−θ exp(−x/ξF ), provided that ξ‖ < ξF .

A field equation analogous to Eq. (25) can be found
for Kratzer potentials. Transfer matrix calculations for
arbitrary binding potentials lead to the relation:

〈0|e2Σαl|0〉
{

θ − α

θ

[

Pw(l, x) + ξF

(

∂Pw(l, x)

∂x

)]

−
∫ ∞

0

dl0
ψ̄′

0(l0)

Σθψ̄0(l0)
Pw(l0, 0; l, x)

}

= Lπ(l, x)

−
∫ ∞

0

dl0
ψ̄′

0(l0)

Σθψ̄0(l0)
Pπ(l0, 0; l, x) (39)

where ψ̄0(l0) ≡ ψ0(l0) exp(Σθl0) and ψ̄′
0(l0) is its deriva-

tive respect to l0 (recall that ψ0(l0) is the ground state

eigenfunction). For Kratzer potentials, ψ̄0(l0) ∝ lφ0 , so
Eq. (39) can be expressed as:

(

θ

θ − α

)φ
∂Pw(l, x)

∂α

+
∂

∂α

[

ξF

(

θ

θ − α

)φ
∂Pw(l, x)

∂x

]

= 0 (40)

As for the contact binding potential case, some interest-
ing quantities can be evaluated from this expression. For
example, the wedge adsorption is found to be:

Γw = (2φ+ 1)(φ+ 1)ΓCP (41)

where ΓCP is the adsorption corresponding to the contact
binding potential Eq. (22).

V. THE BREATHER MODE PICTURE

In order to understand the origin of the new correlation
length ξF we identified in previous Sections, we recall
the definition of the 2−point distribution function for
x2 > x1 ≥ 0, Eq. (13). This expression can be written
in the following way:

P c
w(l2, x2|l1, x1) = P c

π(l2, x2|l1, x1) ≡ P c
π(l2, x2 − x1|l1, 0)

(42)
where P c

w(l2, x2|l1, x1) and P c
π(l2, x2|l1, x1) are, respec-

tively, the wedge and planar conditional probability of
the interface being at a relative height l2 from the sub-
strate at x2, provided that the interface is pinned at a
relative height l1 at x1, defined as:

P c
i (l2, x2|l1, x1) =

Pi(l1, x1; l2, x2)

Pi(l1, x1)
(43)

where the subscript i indicates if this probability is con-
sidered in the wedge (i = w) or in the planar (i = π)
geometry.

In view of the identity between the wedge and pla-
nar conditional probability distribution functions we first
consider the of a planar substrate. The conditional prob-
ability can be obtained as:

P c
π(l2, x|l1, 0) =

ψ∗
0(l2)

ψ∗
0(l1)

e−
Σθ2

2 xZπ(l1, l2;x) (44)

For contact binding potentials, Eq. (44) can be written
explicitely as:

P c
π(l2, x|l1, 0) =

√

Σ

2πx
e−

Σ(l2−l1+θx)2

2x

+e−2Σθl2

[

√

Σ

2πx
e−

Σ(l1+l2−θx)2

2x

+Σθerfc

(

√

Σ

2πx
(l1 + l2 − θx)

)]

(45)

If l1 is very large compared with 〈l〉π ≡ 1/2Σθ, we
can identify two different behaviors of P c

π(l2, x|l1, 0) as
a function of l2 (see Fig. 3). If x < l1/θ, the con-
ditional probability is basically the free interface condi-
tional probability that fluctuates around an average value
〈l2(x)〉 = l1 − θx, with a standard deviation of the order

of
√

x/Σ. For x > l1/θ, the conditional probability be-
comes the 1−point planar planar distribution function
Pπ(l2) = 2Σθ exp(−2Σθl2), completely uncorrelated to
the value of l1. The transition between the two regimes
occur in an x interval around xt = l1/θ which has a width

of order of
√

2l1/Σθ3 ≡
√

xtξ‖. These results are con-
firmed by the exact evaluation of the first moments of
the conditional probability:

〈ln2 〉c(l1, x) =

∫ ∞

0

dl2 l
n
2P

c
π(l2, x|l10) (46)
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FIG. 3: Illustration of a typical interfacial configuration
pinned at l1 ≫ 〈l〉π for x = 0 (thin continuous line). We
have set Σ = 1 (it defines the length scale), θ = 0.2 and
l1 = 500. The thick continuous line corresponds to the con-
ditional average profile 〈l2〉

c(l1, x), and the dotted lines cor-
respond to max(0, 〈l2〉

c(l1, x) ± 3ξc

⊥(l1, x)) where ξc

⊥(l1, x) is
the conditional roughness. Any interfacial configuration has
a probability of at least 95% of being between the dotted
lines. Inset: an enlargement of the area around xt = l1/θ.
Other characteristic length scales are represented. See text
for explanation.

The average conditional interfacial profile, which corre-
sponds to n = 1, is given by:

〈l2〉c(l1, x) = (l1 − θx) +

√

Σ

2πx
e−

Σ(l1−θx)2

2x

+

[

1

4Σθ
− l1 − xθ

2

]

erfc

(

√

Σ

2πx
(l1 − θx)

)

−e2Σθl1

4Σθ
erfc

(

√

Σ

2πx
(l1 + θx)

)

(47)

and the conditional roughness ξc
⊥(l1, x) is defined as

√

〈l22〉c − 〈(l2〉c)2, where 〈l22〉c(l1, x) can be written as:

〈l22〉c(l1, x) =
[

(l1 − θx)2 +
x

Σ

]

−
(

1

Σθ
− l1 +

θx

)

√

Σ

2πx
e−

Σ(l1−θx)2

2x +

[

x

2Σ
− 1

4Σ2θ2
+

(l1 − xθ)2

2

]

erfc

(

√

Σ

2πx
(l1 − θx)

)

+

[

xθ + l1 −
1

2Σθ

]

e2Σθl1

2Σθ
erfc

(

√

Σ

2πx
(l1 + θx)

)

(48)

We obtain two main conclusions from these results when
l1 ≫ 〈l〉π. First, the interfacial positions are highly corre-
lated to the the central one for |x| < l1/θ. Secondly, the
intrinsic interfacial fluctuations are small in this x range

compared to the conditional average value. Actually, if
we set l1 as the length scale, the rescaled conditional
probability distribution function P̃ c

π(l2/l1, x/l1|1, 0) ≡
l1P

c
π(l2, x|l1, 0) behaves as:

P̃ c
π(l2/l1, x/l1|1, 0) → δ

(

l2 − l1 + θx

l1

)

H(l1 − θx)

+δ

(

l2
l1

)

H(θx− l1) (49)

when Σθl1 → ∞. We expect this result to be valid for
any potential and also for random bond disorder, since
in all these cases the wandering exponent for the free
interface ζ < 1. this can be checked for the marginal
1/l potential. The Laplace transform of the conditional
probability distribution as:

L [P c
π(l2, x|l1, 0)] ≡

∫ ∞

0

dx eExP c
π(l2, x|l1, 0)

=
ψ∗

0(l2)

ψ∗
0(l1)

Z̃π(l1, l2, E − Σθ2/2) (50)

For Σ → ∞ at fixed E, θ, l1 and l2 , and taking into
account Eq. (18) and that the ground state eigenfunction
ψ0(l) ∝ lφ exp(−Σθl), we obtain the following behavior
for the Laplace transform of the conditional probability
distribution function:

L [P c
π(l2, x|l1, 0)] → 1

θ
H(l1 − l2)e

E(l1−l2)/θ − δ(l2)

E
eEl1/θ

(51)
The Laplace transform can be inverted, leading to Eq.
(49).

To proceed, we return to our discussion about the
wedge geometry. Due to the presence of the boost fac-
tor exp(2Σαl) in the midpoint probability distribution
function, the midpoint interfacial height is almost always
further from the substrate than the mean wetting layer
thickness 〈l〉π for any binding potential. If we assume
that the conditional probability distribution function is
given by Eq. (49), which corresponds to as neglecting the
intrinsic interfacial fluctuations around the conditional
interfacial profile, we can capture the main features of
both the average interfacial profile and the correlations
along the wedge for contact binding potentials. Actually,
this picture is completely equivalent to the 2D wedge
breather mode model [3, 4].

The average interfacial profile can be written as:

〈l(x)〉w =

∫ ∞

0

dl1Pw(l1, 0)

[
∫ ∞

0

dl2l2P
c
π(l2, x|l1, 0)

]

≈
∫ ∞

θx

dl1Pw(l1, 0)(l1 − θx) =

∫ ∞

0

sPw(s+ θx, 0)ds(52)

The behavior of 〈l(x)〉w for large x is dominated by the
large l asymptotics of Pw(l, 0). The latter can be ob-
tained by taking into account Eq. (14) form = n = 0 and
making use of the WKB approximation for the 1−point
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planar distribution function:

Pπ(l) ∼ 1
√

1 + 2W (l)
Σθ2

exp

(

−2Σθ

∫ l

dt

√

1 +
2W (t)

Σθ2

)

∼ e−2Σθl exp

(

−2

∫ l

dt
W (t)

θ

)

l → ∞(53)

The first thing we can see is that, for large x, the de-
cay of 〈l(x)〉w in this approximation is controlled by an
exponential term exp[−2Σθ(θ − α)x]. So, a new length
scale ξ∗F is defined as 1/2Σθ(θ − α). Close to the filling
transition, ξ∗F = ξF − 1/2Σαθ ∼ ξF + O(1).

Depending on the large l behavior of the (attractive)
binding potentials, different situations can arise [5]. The
filling mean field regime is characterized by binding po-
tentials that decay to zero as 1/lp where p < 1/ζ − 1,
implying ζ < 1 for thermal disorder (the wandering ex-
ponent ζ = 1/2). A saddle point calculation shows that
close to the filling transition 〈l(0)〉w ∼ 1/Σ(θ − α)p.
As θ → α, the relevant length scale in the x direction,
〈l(0)〉w/θ ≫ ξ∗F , so the latter length scale is irrelevant (in
fact, intrinsic interfacial fluctuations that we neglected
can be more important).

For p = 1, both length scales become of the same order,
and consequently 〈l(x)〉w ∼ 〈l(0)〉wf(x/ξ∗F ) exp(−x/ξ∗F ),
where f(x) diverges at most algebraically, and depends
on the detailed structure of the binding potential through
the short distance l dependence of Pw(l, 0). For a pure
1/l potential, f(x) = (1 + 2x/3 + x2/6). This expression
verifies the differential equation for 〈l(x)〉w that arises
from Eq. (40) in the scaling limit.

The filling fluctuation regime corresponds to potentials
with p > 1, and is characterized by universal critical
exponents and scaling functions. Indeed in the critical
regime the scaling behavior is the same as that found for
contact binding potentials. For x → ∞, we find that
asymptotically 〈l(x)〉w ∼ 〈l(0)〉w exp(−x/ξ∗F ). This solu-
tion agrees with the asymptotics of 〈l(x)〉w for contact
binding potentials when θ → α, although with a decay
length slightly smaller. However, the behaviour is asymp-
totically correct if we assume that ξ∗F ≡ ξF .

For the correlation functions, we have:

〈l(x)l(0)〉w − 〈l(x)〉w〈l(0)〉w =

∫ ∞

0

dl1l1Pw(l1, 0)∆(l1, x)

(54)
where ∆(l1, x) is defined as:

∆(l1, x) =

∫ ∞

0

dl2l2 [P c
π(l2, x|l1, 0) − Pw(l2, x)] (55)

In the breather mode approximation, ∆(l1, x) can be ob-
tained as:

∆(l1, x) ≈ (l1 − θx)H(l1 − θx) − 〈l(x)〉w (56)

We find different behaviors depending on the value of p.
In the filling mean field regime, ∆(l1, x) is negligible in

this scale. For the filling fluctuation regime, the correla-
tion function decays as:

〈l(x)l(0)〉w − 〈l(x)〉w〈l(0)〉w ∼ 〈l(0)〉2w
(

1 +
x

ξ∗F

)

e
− x

ξ∗
F

(57)
and again is in agreement with the behavior of the exact
correlation function for contact binding potentials Eq.
(32) when x→ ∞ and θ → α (assuming again that ξ∗F ≡
ξF ). Finally, for the marginal case p = 1 the behavior
of the correlation function is predicted to be for x → ∞
as 〈l(0)〉2wg(x/ξ∗F ) exp(−x/ξ∗F ), where g(x) is a function
that diverges at most algebraically.

Another quantity of interest is the midpoint local sus-
ceptibility χw(l), defined as:

χw(l) =
∂ρ(l)

∂h

∣

∣

∣

∣

∣

h=0

= 2(ρl − ρv)

∫ ∞

l

dsPw(s, 0)∆̄(s)(58)

where ∆̄(l) ≡
∫∞

0 dx∆(l, x). In the breather mode ap-

proximation and in the filling fluctuation regime, ∆̄(s)
has the following expression:

∆̄(l) =
1

θ

(

l2

2
− 〈l(0)〉2w

)

(59)

which is exact for contact binding potentials. This ex-
pression, together with the midpoint wedge covariance
Eq. (2), leads to the covariance relationship between the
local susceptibilities [5]:

χw(l; θ, α) =
θ − α

θ
χπ(l, θ − α) (60)

where χπ(l, θ) is the local susceptibility corresponding to
the planar geometry for a contact angle θ.

Finally, we note that the breather mode picture has
direct consequences for the scaling of the interfacial pro-
file in the filling fluctuation regime. To see this, recall
that the wedge midpoint probability distribution func-
tion scales as [5]:

Pw(l) =
1

〈l(0)〉w
Λ

(

l

〈l(0)〉w

)

(61)

where Λ(s) is a universal function and, due to covari-
ance, is the same as the scaling function for the corre-
sponding planar 1−point probability distribution func-
tion. Complementing the scaling of the probability dis-
tribution function is the position dependence of the in-
terfacial profile, which we anticipate satisfies:

〈l(x)〉w = 〈l(0)〉wφ
(

θx

〈l(0)〉w

)

(62)

where φ(s) is another universal function. In the breather
mode picture, the interface is infinitely stiff in the filled
region implying that the scaling functions Λ(s) and φ(s)
are related via:

φ(s) =

∫ ∞

s

ds̄Λ(s̄)(s̄− s) (63)
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or equivalently:

φ′′(s) = Λ(s) (64)

A remarkable consequence of this relation is that the
behavior of the interfacial profile close to the midpoint
is determined by the short distance behavior of the
wedge midpoint 1−point probability distribution func-

tion. Since Λ(s) ∼ s
1
ζ
−2 as s → 0 [5], we have φ(s) ∼

1−|s|+A|s| 1ζ for small s. Note that the first two terms are
needed to preserve the continuity of the true interfacial
profile 〈y(x)〉w and its derivative at the wedge midpoint.
This result suggests that the interface behaves, for small
values of x, as a random walk of x as a function of z. This
prediction is consistent with the behaviour of 〈l(x)〉w for
contact binding potentials in the scaling limit θ → α,
ξ‖/ξF → 0 but x/ξF finite.

Finally, note that Eq. (64) is also obeyed by the
(non-universal) scaling functions corresponding to the
marginal case.

VI. RENORMALIZATION GROUP APPROACH

TO THE CRITICAL FILLING TRANSITION

In this Section we will justify the critical properties
of the filling transition using a renormalization group
framework. Specifically we will generalize an exact deci-
mation functional renormalization group procedure pre-
viously used to study 2D critical wetting [17, 18, 19].
Our transfer matrix results show that geometry plays a
fundamental role in determining the critical behavior, so
we anticipate that the appropiate renormalization group
procedure must preserve the wedge shape. This implies
that the effective wandering exponent ζ determining the
rescaling of the interfacial height l must be ζ = 1. This
contrasts with the value ζ = 1/2, which is appropiate
for free interfaces and also planar wetting transtions. We
will see that this choice leads naturally to the breather
mode picture of the filling transition, implying that in-
terfacial fluctuations are irrelevant except for those that
determine the wedge midpoint interfacial position.

Before introducing the renormalization group scheme,
we generalize some of the results of previous Sections.
The set of (2n+ 1)−point distribution functions that in-
cludes the midpoint interfacial position can be obtained
in terms of the planar case counterpart by Eq. (14).
If we set θ = α, it is clear from that expression that
Pw(−n; . . . ;n) ≡ 0 at the critical filling transition for
any value of n. However, all the correlation functions
decay at the same rate, since Eq. (14) can be rewritten
as:

Pw(−n; . . . ;n) = Pw(0)
Pπ(−n; . . . ;n)

Pπ(0)
(65)

Consequently, the conditional (2n+1)−point probability
distribution function remains finite at the filling transi-
tion. The only relevant operator (in a renormalization

group sense) should be related only to the 1−point prob-
ability distribution function at the midpoint. Taking into
account Eq. (11) and the definition of the 2−point condi-
tional probability distribution function Eq. (44), we can
rewrite Eq. (65) as

Pw(−n; . . . ;n) = Pw(0)

n−1
∏

i=0

P c
π(li+1, xi+1 − xi|li, 0)

×
−1
∏

i=−n

P c
π(li, xi+1 − xi|li+1, 0) (66)

where we have chosen the ground state eigenfunction to
be real and positive. The 2−point conditional proba-
bility distribution function has a non-trivial limit when
Σθl1 → ∞ (see Eq. (49)). Our goal will be to find
a renormalization group scheme in which the 2−point
conditional probability distribution function converges to
this limit, and the only relevant operator is related to the
wedge midpoint 1−point distribution function.

Let us consider a discrete version of the interfacial
hamiltonian Eq. (3):

βH =
n−1
∑

i=−n

{

Σ

2
(zi+1 − zi)

2 +W (zi − iα)

}

(67)

where the spacing between sites a = 1 defines the length
unit for l, Σ−1, etc. Using a similar transformation to
the continuous case, Eq. (67) can be written as:

βH [l] = 2n
Σα2

2
+ 2Σαln − 2Σαl0

+

n−1
∑

i=−n

{

Σ

2
(li+1 − li)

2 +
W (li) +W (li+1)

2

}

(68)

where periodic boundary conditions have been applied
(ln = l−n). To simplify our discussion, we will consider
n → ∞ and neglect the boundary effects. The probabil-
ity of any interfacial configuration is given by:

Pw({li}) =
e−βH

Z
= e2Σαl0+βfW

∞
∏

i=−∞

e−βH̃(li,li+1) (69)

where H̃(li, li+1) is defined as:

βH̃(li, li+1) = βfs +
Σ

2
(li+1 − li)

2 +
W (li) +W (li+1)

2
(70)

where fs is the planar surface free energy per unit length
and is related to the contact angle corresponding to the
binding potential W (l) via:

βfs =
1

2
ln

(

Σ

2π

)

− Σθ2

2
(71)

For θ = 0, βfs converges towards the free interface free
energy per unit length. Note that in the continuum limit
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Eq. (6), this term is absorbed in the path measure. On
the other hand, βfW is defined as:

βfW = lim
n→∞

{(

−lnZ + 2n
Σα2

2

)

− 2nβfs

}

(72)

that corresponds to the wedge excess free energy (we
suppose that this quantity is well-defined). Note that

H̃(li, li+1) is invariant under an exchange of its argu-
ments.

Let us now consider a decimation procedure, similar
to the one used for the study of 2D critical wetting. We
group the sites in blocks of b units, keeping the first one
and integrating over all the interfacial positions of the
remaining b − 1 sites in the block. Since the site i = 0
plays a special role, the sites to be kept in each decima-
tion step are those with i = jb, with j ∈ Z. After that,
we rescale x positions by a factor b and l by a factor bζ,
i.e.:

x→ x′ =
x

b
; li → l′j =

ljb

bζ
(73)

The new hamiltonian βH̃′(l′j , l
′
j+1) is defined as:

e−βH̃′(l′j ,l′j+1) = bζ
∫ ∞

0

dl1e
−βH̃(bζ l′j ,l1)

. . .

∫ ∞

0

dlb−1e
−βH̃(lb−1,bζ l′j+1) (74)

Note that the renormalized hamiltonian βH̃′(l1, l2) is
symmetrical under an exchange of its arguments provided
that the original βH̃(l1, l2) is also symmetrical (even if it
is not defined as Eq. (70)). This procedure is iterated,
leading to a sequence of renormalized hamiltonians.

In order to complete the description of the renormal-
ization group (RG) procedure we should give the trans-
formation rules for α and βfW . First we revisit the pla-
nar geometry (α = fW = 0). We will consider the value
of the exponent ζ arbitrary, unlike in Refs. [17, 18, 19],
where ζ = 1/2. In general, after an arbitrary number of

RG steps, we can write any βH̃(li, li+1) as:

βH̃(li, li+1) =
Σ

2
(li+1 − li)

2 + W̃ (li, li+1)

+
1

2
ln

(

Σ

2π

)

− Σθ2

2
(75)

where W̃ (li, li+1) is a symmetric function under exchange
of its arguments. Obviously, in principle this function
need not decay to zero when both arguments are large
(as it does in Eq. (70)). However let us suppose that it
decays as −A/[(li + li+1)/2]p when li, li+1 → ∞. After
making a RG step, we would like to find the asymp-
totic behavior of the renormalized W̃ ′(l′j , l

′
j+1) for large

enough l′j , l
′
j+1. Expanding the RHS of Eq. (74) and

keeping terms up to first order in W (since l′j and l′j+1

are large, the values of l1 . . . lb−1 that contribute most to

the integral are also very large), we find that:

e−βH̃′ ≈ bζeb Σθ2

2

∫ ∞

0

dl1

√

Σ

2π
exp

(

−
Σ(bζ l′j − l1)

2

2

)

. . .

∫ ∞

0

dlb−1

√

Σ

2π
exp

(

−
Σ(lb−1 − bζ l′j+1)

2

2

)

×
[

1 −W (bζ l′j , l1) −W (lb−1, b
ζ l′j+1)

−
b−2
∑

i=1

W (li, li+1)

]

(76)

The lowest order term (corresponding to set W = 0) can
be estimated for large l′j , l1, . . . , lb−1, l

′
j+1 by extending

the lower integration limits to −∞, and has the value:

bζeb Σθ2

2

∫ ∞

−∞

dl1

√

Σ

2π
exp

(

−
Σ(bζ l′j − l1)

2

2

)

. . .

∫ ∞

−∞

dlb−1

√

Σ

2π
exp

(

−
Σ(lb−1 − bζl′j+1)

2

2

)

= eb Σθ2

2

√

Σb2ζ−1

2π
exp

(

−
Σb2ζ−1(l′j − l′j+1)

2

2

)

(77)

So, in order that the renormalized binding potential W ′

decays to zero at large values of both its arguments, the
interfacial stiffness and the contact angle must transform
as:

Σ → Σ′ = Σb2ζ−1 ; θ → θ′ = θb1−ζ (78)

Two comments are pertinent at this point. Firstly, the
transformation of the interfacial stiffness is also valid for
a free interface. Secondly, the change in the contact an-
gle has a geometrical interpretation, since its scaling Eq.
(78) corresponds exactly to the change of small angles
under the coordinates scaling Eq. (73). Thus it is rea-
sonable to expect that α must change in the same way.

If we take into account the first order in W , we can
characterize the decay of the renormalized potential at
large values of l′j and l′j+1. For simplicity, we consider
the case b = 2. The renormalized binding potential has
the following expression:

W ′(l′j , l
′
j+1) ≈

√

Σ

π

∫ 0

−∞

dl1e
−Σ

(

l1−2ζ lj+lj+1
2

)2

+

√

Σ

π

∫ ∞

0

dl1e
−Σ

(

l1−2ζ lj+lj+1
2

)2
[

W (2ζ l′j , l1)

+W (l1, 2
ζl′j+1)

]

= W ′
1(l

′
j , l

′
j+1) +W ′

2(l
′
j , l

′
j+1) (79)

The first term W ′
1 corresponds to the contribution of the

hard wall to the renormalized binding potential, and W ′
2
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corresponds to the contribution of the original binding
potential W . The hard wall contribution can be evalu-
ated exactly as:

W ′
1(l

′
j , l

′
j+1) =

1

2
erfc

[
√

22ζΣ

π

(

l′j + l′j+1

2

)

]

≈
exp

[

− 22ζΣ
π

(

l′j+l′j+1

2

)2
]

√
22ζΣ(l′j + l′j+1)

l′j + l′j+1 → ∞ (80)

For W ′
2, we take into account the long distance behav-

ior of W . After some algebra, the leading order of
W ′

2(l
′
j , l

′
j+1) can be written as:

W ′
2(l

′
j , l

′
j+1) ≈ −21−ζpA

(l̄′j)
p

∫ ∞

−s0/2

ds
e−s2

/
√
π

[1 + s/s0]
p (81)

where l̄′j ≡ (l′j + l′j+1)/2 and s0 ≡ √
π2ζ+1 l̄′j. As l̄′j → ∞,

the integral tends to 1 and we can see that W ′ ∼ W ′
2 ∼

A′/(l̄′j)
p, where A′ = Ab1−ζp. It is interesting to note

that this result is also obtained by the following scaling
argument for the binding potential:

A

lp
→ A′

(l′)p
= b

A

lp
= b

A

(bζ l′)p
=
Ab1−ζp

(l′)p
(82)

where we have taken into account that the binding po-
tential is a free energy per x unit length.

This analysis shows that the RG procedure leaves in-
variant the functional dependence of the asymptotic be-
havior of the binding potential. Two regimes can be
identified. If p > 1/ζ, the binding potential strength
decreases in each RG step. For p < 1/ζ the binding
potential strength grows in each RG step. Finally, the
marginal case p = 1/ζ corresponds to the leading asymp-
totic behavior remaining invariant. For ζ = 1/2, which is
the relevant value for planar wetting phenomena, this be-
havior leads to the existence of two and three fluctuation
regimes for complete and critical wetting, respectively
[20]. Note that this choice of ζ keeps the relevant mi-
croscopic scale ξb ∼ Σ−1 invariant. The analysis of the
critical wetting from this RG approach can be found in
Refs. [17, 18, 19].

A special class of effective hamiltonians are the follow-
ing:

exp[−βH̃(li, li+1)] = ZΣ,W
π [li, li+1; 1]e−

Σθ2

2 (83)

where ZΣ,W
π [li, li+1; 1] is the partition function Eq. (6)

with x = a ≡ 1 for arbitrary values of the interfacial stiff-
ness and binding potential W (l). Such Hamiltonians can
be regarded as those which are generated after one iter-
ation of the renormalization group provided that b very
large. Indeed the fixed points found in Refs. [17, 18, 19]
belong to this class. Taking into account the properties
of the path integrals, the renormalized potential after a
RG step Eq. (74) can be written as:

exp[−βH̃′(l′j , l
′
j+1)] = bζZΣ,W

π [bζ l′j , b
ζ l′j+1; b]e

− bΣθ2

2

(84)

For contact binding potentials Eq. (6) and Kratzer po-
tentials Eq. (18), it can be checked that Eq. (84) corre-
sponds to an effective hamiltonian of the same form as
the original since:

bζZΣ,W
π [bζ l′j , b

ζ l′j+1; b] = ZΣ′,W ′

π [l′j , l
′
j+1; 1] (85)

where Σ and θ are transformed via Eq. (78) to Σ′ and
θ′. For Kratzer potentials w must change as Σ−1, i.e.
w′ = wb1−2ζ = w/b in order to preserve the invariance of
the leading order behavior under renormalization.

Finally to finish our discussion of the RG for planar
critical wetting phenomena, we note that the 1−point
distribution function renormalizes as:

P ′
π(l′0) = bζPπ(bζ l′0) (86)

We will require this result later. Returning to our dis-
cussion about the RG in the wedge geometry, we need to
provide the transformation rules for α and βfW . We will
assume that α changes as θ:

α→ α′ = αb1−ζ (87)

In order to obtain the transformation rule for βfW , we
consider how the 1−point midpoint wedge probability
distribution function renormalizes:

P ′
w(l′0, 0) ≡ P ′

π(l′0)e
2Σ′α′l′0+(βfw)′

= bζPπ(bζ l′0)e
2Σαbζ l′0+(βfw)′ = bζPw(bζ l′0, 0) (88)

implying that βfw remains invariant:

βfw → (βfw)′ = βfw (89)

Finally, we note that if we change the effective hamilto-
nian by:

βH(li, li+1) = βH̃(li, li+1) ± [f(li+1) − f(li)] (90)

where the sign is positive for i ≥ 0 and negative for i < 0,
the probability of an interfacial configuration is now:

Pw({li}) = e2Σαl0+2f(l0)+βfW

∞
∏

i=−∞

e−βH(li,li+1) (91)

The renormalization of the hamiltonian Eq. (74) is valid
provided:

f ′(l′i) = f(bζ l′i) + C′ (92)

Note that any function f(li) (unless it is a constant)
breaks the invariance of βH under exchange of its ar-
guments and consequently introduces a directionality in
the x axis. This is perfectly sensible in the wedge geome-
try, but is not admissible for the planar substrate, where
−x is completely equivalent to x. A convenient choice
for f(li) is:

f(li) =
1

2
lnPπ(li) (93)
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where Pπ(li) is the 1−point probability distribution func-
tion in the planar geometry, and the condition Eq. (93)
is verified due to Eq. (86). It is not difficult to see that
exp(−βH) is the 2−point conditional probability distri-
bution function. Taking into account this fact and Eq.
(88), it is clear that Eq. (91) is exactly the same as Eq.
(66).

The one remaining issue to be decided is the relevant
value of the exponent ζ. We choose ζ = 1, so that the
wedge tilt angle α and contact angle θ remain invariant
in each step of the RG.

The procedure is now standard. The RG flow trajecto-
ries are constrained to the θ−constant hypersurfaces in
functional space. Since we know that the filling transi-
tion occurs for θ = α, we first check that this situation
corresponds to the critical manifold. Instead of consid-
ering an arbitrary potential, we choose as initial effec-
tive hamiltonians those of the form given by Eq. (83),
in particular with the partition function corresponding
to contact binding potentials and those of Kratzer form.
When the number of RG steps n → ∞, the probability
distribution of an interfacial configuration converges to a
fixed point of the form:

P ∗
w({li}) ∝ l2φ

0 e(βfW )∗
∞
∏

i=−∞

e−βH∗(li,li+1) (94)

where (βfW )∗ = −∞, and βH∗ is defined as:

e−βH∗(li,li+1) =



























δ(li+1 − li + α)H(li − α)

+δ(li)H(α− li) i ≥ 0

δ(li − li+1 + α)H(li+1 − α)

+δ(li+1)H(α− li+1) i < 0

(95)
It is straightforward to see that Eq. (95) is a fixed point
of Eq. (74). Obviously, since (βfW )∗ = −∞, the proba-
bility distribution for any interfacial configuration is zero.
Nevertheless, we will consider Eq. (94) as formally dif-
ferent from zero. The basin of attraction for the φ = 0
case is expected to be those hamiltonians with binding
potentials that decay faster than 1/l (corresponding to
the filling fluctuation regime). Hamiltonians that have
a binding potential with a leading order −φα/l will be
attracted to the fixed point Eq. (94) with the same value
of φ for θ = α (marginal case). Finally, if lW (l) diverges
as l → ∞, there is no fixed point and the filling transition
is mean-field-like.

If θ 6= α, no matter how small |θ − α| is, the RG flow
drives the hamiltonian away from the critical manifold.
For θ > 0, exp(−βH) converges to a fixed point ex-
pression Eq. (95) with α replaced by θ. Even though
this new fixed point for the conditional probability is dif-
ferent from the the critical fixed point, the flow for the
2−point conditional probability distribution function will
remain close (in some functional sense) to the critical one
if |θ − α| ≪ α. Consequently, there is no relevant field
associated with βH.

On the other hand, the wedge midpoint 1−point prob-
ability distribution function behaves differently. We con-
sidered the same initial effective hamiltonians as for the
θ = α case. If θ < α, the distribution has an unphysical
exponential growth with l0 as exp(Σ|θ−α|l0). The expo-
nential term grows in each RG step, driving the probabil-
ity distribution function to infinity (however, βfw = −∞,
so the “real” probability of any interfacial configuration
is zero). The attractor at infinity can be regarded as the
complete filling fixed point. For θ > α, the wedge mid-
point 1−point probability distribution function becomes
more and more peaked around zero as Σ → ∞, converg-
ing to the low temperature fixed point:

PLT
w ({li}) =

∞
∏

i=−∞

δ(li) (96)

These results imply that there is a relevant field (in the
RG sense) associated with Pw(l0, 0). Actually, the only
other relevant operator is h ∝ µc − µ, where µ is the
chemical potential and µc the value at gas-liquid coexis-
tence.

Recall that the critical exponents defined at coexis-
tence (µ = µc):

〈l(0)〉w ∼ t−βw ; ξ⊥(0) ∼ t−ν⊥

ξx ∼ t−νx ; βfW ∼ t2−αw (97)

where t = Tf−T and Tf is the critical filling temperature.
Close to a critical filling fixed point (for any φ), all the
relevant scale lengths Σ−1, 〈l(0)〉w, ξx, ξ⊥(0), etc. are
reduced by a factor 1/b. To extract the dependence on t
we need to know the largest eigenvalue of the linearized
RG flow close to the critical fixed point. We argued above
that this eigenvalue is associated to the transformation
of the x = 0 term of the hamiltonian βH0. We again
considered the special hamiltonians Eq. (83) for contact
and Kratzer binding potentials. The expression of βH0

for these potentials is:

βH0 = 2Σ(θ − α)l0 − 2φ ln l0 + C (98)

Taking into account how βH0 renormalizes, and its ex-
pression at the critical fixed point (see Eq. (94)), it is
clear that the largest eigenvalue is b, and its associated
eigenfunction is proportional to Σ(θ − α)l0. As a con-
sequence, the critical exponents ν⊥ = νx = βw = 1 for
both the filling fluctuation and marginal regimes.

To get the leading singularity for the wedge excess free
energy is more complicated. As βfw remains invariant
under the RG transformations, 2 − αw = 0. However,
this value does not rule out a logarithmic divergence in
Tw − T . In order to get such a dependence, we use the
following thermodynamic relationship:

(

∂(βfw)

∂α

)

Σ,θ

= −2Σ〈l(0)〉w (99)

where the derivative is made without changing Σ or any
characteristic of the binding potential (in particular the
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contact angle). We can rewrite Eq. (99) as:

(

∂(βfw)

∂Σ(θ − α)

)

Σ,θ

= 2〈l(0)〉w (100)

After a renormalization step, we know that, even when Σ
and the binding potential have changed, this derivative
changes as 1/b since βfw, θ and α are invariant, and
Σ−1 and 〈l(0)〉w decrease by a factor 1/b. If we regard
Σ(θ − α) (∝ Σ, and recall that θ − α is invariant under
a RG step) as proportional to t when the flow is close
to the critical fixed point, Eq. (100) implies that βfw

diverges logarithmically as T → Tf . Furthermore, βfw

is invariant under renormalization and must vanish as
α → 0. Consequently close to the filling transition it
must be proportional dependence to ln(θ − α) − ln(θ).

The critical exponents obtained for the critical filling
transition are in complete agreement with exact calcula-
tions and scaling arguments [5].

VII. CONCLUSIONS

The structure of the gas-liquid interface bound at a 2D
wedge and close to the filling transition has been stud-
ied using exact transfer-matrix methods. These calcula-
tions show the emergence of a new correlation length ξF
sufficiently close to the phase boundary (α < θ < 2α).
The explicit transfer matrix results for correlation func-
tions and interfacial roughness completely support the

breather mode picture of fluctuation effects. The same
picture also emerges of a renormalization group approach
that leaves the wedge geometry invariant. The fact that
the only relevant fluctuations are those that translate the
midpoint interfacial height leads to a simple relationship
between the interfacial structure and midpoint height
probability distribution function in the scaling limit. The
extension of this approach to higher dimensions and/or
different geometries would be very interesting and further
work is being carried out in that direction.

Finally it would be instructive to understand the phys-
ical origin of the covariance relationship Eq. (2). In the
filling fluctuation regime we found that covariance can be
inferred from the existence of the differential relation Eq.
(25) and some regularity conditions. The very existence
of such a field equation is itself indicative that some un-
known symmetry relates wetting and filling transitions.
Further work is required to elucidate whether any such
hidden symmetry exists.
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