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Fluid adsorption near an apex: Covariance between complete and critical wetting

A. O. Parry,1 M. J. Greenall,1 and J.M. Romero-Enrique1, ∗

1Department of Mathematics, Imperial College 180 Queen’s Gate, London SW7 2BZ, United Kingdom

Critical wetting is an elusive phenomenon for solid-fluid interfaces. Using interfacial models we
show that the diverging length scales, which characterize complete wetting at an apex, precisely
mimic critical wetting with the apex angle behaving as the contact angle. Transfer matrix, renor-
malization group (RG) and mean field analysis (MF) shows this covariance is obeyed in 2D, 3D and
for long and short ranged forces. This connection should be experimentally accesible and provides
a means of checking theoretical predictions for critical wetting.

PACS numbers: 68.08.Bc, 05.70.Np, 47.20.-k, 68.35.Md

Advances in the controlled fabrication of micropat-
terned substrates have stimulated the experimental and
theoretical study of fluid adsorption at tailored surfaces
[1, 2, 3, 4, 5]. For example, Mistura and co-workers [5]
have recently investigated complete wetting of Ar on sev-
eral parallel arrays of wedges and apexes. They show con-
vincingly that the adsorption within the (independent)
wedge regions is geometry dominated and distinct from
the planar complete wetting case. As well as having im-
plications for microfluidics such studies have also revealed
a number of unexpected results relating interfacial fluc-
tuation effects and substrate geometry which have wide
application to other phase transitions (see later). Here
we use effective Hamiltonian theory to show that com-

plete wetting on apex shaped substrates reveals a hidden
connection (covariance) with critical (continuous) wet-
ting transition occurring on planar surfaces [6, 7]. The
covariance emerges when one considers how, at bulk co-
existence, the mean height lA(α) of the unbinding inter-
face above the apex tip depends on the apex angle α.
For shallow apexes we show that lA(α) is identical to the
mean interfacial thickness occurring at a particular class
of critical wetting transition with the apex angle playing
the role of an effective contact angle. The covariance is
valid for 2D and 3D apexes, for arbitrary intermolecular
forces and is, we believe, a general feature which should
also be present in more microscopic models.

The central result of our article is the following covari-
ance relation for the interfacial height probability dis-
tribution function (PDF) which precisely quantifies the
influence of the apex geometry on the complete wetting
film. We emphasize that the PDF contains a great deal
of information determining the (local) interfacial height,
roughness and the scaling properties of the density pro-
file. Let PU

A (l, α) denote the PDF for the interface height
above the apex where the superscript refers to the repul-
sive binding potential U(l) ∼ Bl−p for a complete wet-
ting film (see below). Let PV

π (l; θ) denote the PDF for a
planar critical wetting transition written in terms of the
contact angle θ. Here V (l) is the binding potential for
a critical wetting transition which, of necessity, contains
attractive and repulsive terms. The covariance relation,

valid for small α and at bulk coexistence, reads

PU
A (l, α) = PV

π (l;α) (1)

where the covariant binding potential

V (l) = −Al−χ/2 + U(l) (2)

with χ = min(p, τ) and A determining the effective con-
tact angle (related to α). Here τ = 2(1 − ζ)/ζ and ζ
are the entropic repulsion and interfacial wandering ex-
ponents respectively [8]. Thus the apex locally binds the
complete wetting film and induces an effective attractive
term in the binding potential, twice the range of the dom-
inant intermolecular or entropic repulsive term. A similar
rule applies in 3D for exponentially decaying potentials.
Recall that in contrast to abundant experimental studies
of complete wetting (including recent work on systems
with short ranged forces [9]) critical wetting transitions
are rather rare [6, 7] for which no examples are known
currently for solid-fluid interfaces. The covariance dis-
cussed here provides a means of effectively inducing crit-
ical wetting behaviour using complete wetting films.

Consider the interface between an infinite apex and
a bulk vapor at temperature T and chemical potential
µ ≤ µsat(T ) (see Fig. 1). We suppose that the flat
wall (α = 0) is completely wet by the liquid phase at
coexistence δµ ≡ µsat−µ(T ) = 0+ corresponding to zero
contact angle. The wall shape is described by a height
function zA = − tanα|x| in the (x, z) plane although we
shall only be interested in the case of shallow apexes for
which we may approximate tanα ≈ α. Macroscopically
far from the apex tip the height of the interface above the
wall is the same as that occurring for a flat wall. Since
the liquid-vapor interface is required to round the apex,
surface tension restrictions imply that the local height lA
above the apex tip is smaller and remains finite even in
the limit of bulk coexistence. We wish to evaluate the
mean interfacial height lA(α) and interfacial roughness
(r.m.s. interfacial width) ξA(α) at bulk coexistence and
the critical exponents

lA(α) ∼ α−βA , ξA(α) ∼ α−νA (3)

For the 3D apex we also wish to determine the transverse
correlation length ξy(α) ∼ α−νy pertinent to correlations
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FIG. 1: Schematic illustration of 3D apex complete wetting,
showing a section of a typical interfacial configuration above
the tip. Diverging length scales are highlighted.

along the apex. Correlations in the x direction are not
described by a finite correlation length and fluctuations
are not localised to a region near the apex.

We begin with the 2D apex. The starting point for our
calculations is the interfacial Hamiltonian model

βHA[l] =

∫

dx

{

Σ

2

(

dl

dx

)2

+ U(l + α|x|)
}

(4)

where l(x) is the local height of the interface above the
z = 0 reference line, Σ is the (reduced) stiffness coeffi-
cient (surface tension) of the liquid-vapor interface and
U(l) denotes the binding potential modelling the com-
plete wetting behavior pertinent to the planar system
α = 0. For shallow apexes, it is permissable to assume
the interface interaction with the wall occurs via the rel-
ative vertical height l̃ ≡ l + α|x|. The binding potential
U(l) has an infinite hard wall repulsion and decays as

U(l) = (ρl − ρg)βδµl +Bl−p (5)

where, for the moment we have allowed for a finite bulk-
order field δµ > 0. Here B is a positive Hamaker con-
stant whilst p accounts for the range of the intermolec-
ular forces. Exponentially decaying binding potentials
will also be considered in our discussion of the 3D apex.
For dimensions in which the free liquid-vapor interface is
rough, critical effects at planar complete wetting transi-
tions fall into two classes [8, 10]: a MF regime for p < τ
and a fluctuation-dominated regime for p > τ . Heuristi-
cally this arises from the interplay between the direct in-
temolecular repulsion ∼ l−p and the effective entropic re-
plusion Ufl(l) ∼ l−τ . In the present paper we restrict our
attention to pure systems for which the interface is rough
for d ≤ 3 and ζ = (3−d)/2. For fixed p the upper critical
dimension for complete wetting is dco = 3−4/(p+2) [10].

The model can be studied using transfer matrix meth-
ods previously developed for the wedge geometry [11].

Care must be taken in defining an infinite apex geometry
and it is convenient to first consider a finite apex ex-
tending over the range [−L/2, L/2] and impose periodic
boundary conditions at the edges. After taking the ther-
modynamic limit L → ∞ at finite δµ > 0 it is straight-
forward to derive an expression for the interfacial height
probability distribution function at arbitrary position x
along the wall. At the apex mid-point symmetry consid-
erations simplify this expression considerably

PU
A (l;α) ∝ |ψ0(l)|2e−2Σαl (6)

where ψ0(l) denotes the ground-state wave function solv-
ing the Schrödinger equation

− 1

2Σ
ψ0(l)

′′ + U(l)ψ0(l) = E0ψ0(l) (7)

with boundary conditions ψ(0) = ψ(∞) = 0. We now
focus on the complete wetting limit δµ → 0. Macro-
scopically far from the apex the interface unbinds from
the wall. Close to the apex however the interface re-
mains bound due to the pinning exponential term in (6).
As α → 0, three different critical behaviors are found:
(I) A MF regime for p < 2, characterized by Gaussian
fluctuations with lA(α) ≫ ξA(α); (II) a marginal case
for p = 2; and (III) a fluctuation dominated regime for
p > 2 with universal critical behavior and large scale
fluctuations lA(α) ∼ ξA(α) ∼ α−1. The explicit expres-
sions for the large distance/scaling behavior of PU

A (l;α),
determining the critical singularities, are given by:

PU
A (l;α) ∼































l
p
2 exp (−2Σαl+ 4

√
2ΣB

2−p l1−p/2) p < 2

l1+
√

1+8ΣB exp (−2Σαl) p = 2

l2 exp (−2Σαl) p > 2

(8)
In the MF regime, a saddle point evaluation reveals that:

lA(α) ∼
(

2B

Σα2

)1/p

; (9)

and νA = 1/p + 1/2. The critical exponents are con-
tinuous at p = 2. These results completely classify the
asymptotic critical behavior for complete wetting at a
2D apex in pure systems. At this point we make two
remarks:

A: The values of the critical exponents follow from a
simple mean-field/entropic repulsion argument. Ignoring
fluctuations the equilibrium interfacial profile is obtained
from minimization of the effective Hamiltonian. A first
integral of the Euler-Lagrange equation determines the
mid-point height at bulk coexistence according to

Σα2

2
= U(lA) (10)
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and leads directly to the result (9) valid in the MF regime
(p < τ). For p > τ interfacial wandering leads to an
entropic repulsion Ufl ∼ l−τ . Thus we should expect two
regimes with βA = max(2/p, ζ/(1−ζ)) in agreement with
the explicit calculation for ζ = 1/2. For later purposes
observe that the MF equation (10) is also appropriate for
higher dimensional apexes.

B: The PDF’s and associated critical exponents are
identical to those occurring at a certain class of 2D criti-
cal wetting transition. At a critical wetting transition the
mean height of the interface lπ, roughness ξ⊥ and par-
allel correlation length ξ‖ for a planar substrate diverge
as the temperature (say) is increased towards a wetting
temperature Tw (µ = µsat). This is equivalent to the
contact angle θ of a sessile drop vanishing as T → T−

w .
The standard interfacial model for this is

βHπ[l] =

∫

dx

{

Σ

2

(

dl

dx

)2

+ V (l)

}

(11)

where V (l) denotes an appropriate binding potential.
The associated PDF PV

π (l; θ) can be calculated using
standard methods which map the problem onto one di-
mensional quantum mechanics [10]. In particular con-
sider 2D critical wetting transitions occurring for the
class of potentials (2) with χ = min(p, 2). For such po-
tentials calculations show that A ∝ θ. A straightforward
calculation of the PDF’s PV

π (l; θ) for p < 2, p = 2 and
p > 2 yields results that, in the critical limit (small θ) are
identical to (8) provided we set θ = α [12]. Apex com-
plete wetting precisely mimics the properties of a critical
wetting transition. From the covariance of the PDF’s it
follows that the mean-interfacial heights satisfy

lA(α) = lVπ (α) (12)

where the RHS is understood to represent the mean
height at a planar critical wetting transition with the
covariant potential (2). It is notable that apex covari-
ance is obeyed at MF level and beyond, and therefore not
necessarily related to fluctuation induced effects such as
hyperscaling. In particular the relation (12) follows di-
rectly from comparing the solution of the MF equation
(10) with the position of the minimum of the critical wet-
ting potential (2) (with χ = p). The covariance relations
for apex complete wetting are similar, but not identi-
cal, to those which exists for 2D wedge filling transitions.
For both pure and impure systems 2D filling transitions
mimic the properties of planar critical wetting transitions
with short-ranged forces in contrast to the present apex
problem where the equivalent critical wetting transition
has long(er)-ranged forces. Wedge covariance and fill-
ing are closely related to the Indekeu-Robledo conjecture
for the line tension [13], and the unzipping transition for
stranded polymer chains [14]. It is likely that similar
connections may also apply for the apex geometry.

Having discussed the 2D apex in detail it is straight-
forward to generalise the results to 3D systems based on
the interfacial model

βHA[l] =

∫

dx

{

Σ

2
(∇l)2 + U(l + α|x|)

}

(13)

where for purposes of generality we have written x =
(x,x‖) where x‖ denotes the d − 2 dimensional vector
along the apex axis. In 3D x = (x, y) but it is instructive
to also consider the generalized apex for 2 ≤ d < 3 since
this gives clear indication that the covariance relations
extend to higher dimensions. First rewrite the Hamilto-
nian in terms of the relative height l̃. The critical behav-
ior follows from elementary RG considerations. Under
rescaling x → x

′ = x/b, l → l′ = lb−ζ the the renor-
malised tilt angle and Hamaker constant are α′ = αb1−ζ

and B′ = Bb2−ζp−2ζ respectively. Thus α is always a
relevant scaling field whilst the intermolecular forces are
only relevant for p < τ . The criticality falls into two
scaling regimes consistent with the explicit 2D results:

(I) A MF regime for p < τ with βA = 2/p, νy = 2/p+1
and νA = ζνy for which (10) is valid.

(II) A fluctuation-regime for p > τ describing the uni-
versality class of systems with short-ranged forces with
βA = ζ/(1 − ζ), νy = 1/(1 − ζ) and νA = ζνy.

Note that for fixed p the upper critical dimension dA =
3− 4/(p+2) and is unchanged from the planar complete
wetting result dco. Remarks A and B made earlier about
the 2D results also apply in higher dimensions, where the
planar covariant effective Hamiltonian is:

βHπ[l] =

∫

dx

{

Σ

2
(∇l)2 + V (l)

}

(14)

For the physically relevant case d = 3, MF theory
is valid for all long-ranged intermolecular forces (finite
p). Thus for non-retarded van der Waals forces we pre-
dict lA(α) ∼

√

2B/Σα2 and observe that this is identi-
cal (covariant) with the growth of the interfacial thick-
ness at a critical wetting transition with binding po-
tential V = −A/l + B/l2. Similar remarks apply for
the interfacial roughnesses at the respective transitions
(ξA(α) ∼ ξ⊥ ∼

√
− lnα). Our final task is to address the

issue of covariance for the marginal case of 3D systems
with short-ranged forces. For this we use the interfacial
model (13) with binding potential U = B exp(−κl) and κ
the inverse bulk correlation length. At MF level we find
κlA(α) ∼ −2 lnα whilst solution of the Ornstein-Zernike
equation for the height-height correlation function along
the apex tip yields ξy ∼ α−1 [15]. Thus the MF expo-
nents for short-range forces are βA = 0(ln), νy = 1 and
are consistent with the ζ → 0 limit of the short-ranged
exponents detailed in (II). Beyond MF we anticipate that
νy is unchanged but that the logarithmic divergence of
lA is altered. To study this we employ the same ap-
proximate linear functional RG approach used for the 3D
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planar wetting transition but with an appropriately mod-
ified matching condition for the new geometry [16]. Un-
der the rescaling of l and x described earlier (with ζ = 0)
the binding potential maps as U(l) → R(b)[U ] which ef-
fectively coarse-grains the potential over the interfacial
roughness. Since the angle and correlation length rescale
as α′ = bα and ξ′y = ξy/b one can curtail the renormal-
ization at b ∼ α−1 at which scale both the renormalized
angle and transverse correlation length are of order unity
and fluctuation effects are negligible. Matching with MF
theory implies Σ/2 = R(1/α)[U(lA)] and a simple calcu-
lation yields

κlA(α) ∼ −(2 + ω) lnα (15)

where ω = κ2/(4πΣ) is the usual wetting parameter and
we have assumed ω < 2 as pertinent to the bulk Ising
universality class. This critical behavior is again consis-
tent with covariance as can be seen by comparison with
the 3D short-ranged critical wetting transition described
by the model (14) with potential

V (l) = −Ae−κl
2 +Be−κl ; l > 0 (16)

where, guided by our earlier findings, we have included
an attractive term which is twice the range of the direct
repulsion. This is the same binding potential appearing
in the standard theory of short-ranged critical wetting
except for a trivial factor of two in the definition of the
inverse bulk correlation length. Accordingly, rescaling κ
and ω in the known RG results for critical wetting [16]

κlVπ (θ) ∼ −(2 + ω) ln θ (17)

where the (rescaled) wetting parameter ω < 2. Note
also that the divergence of ξy ∼ α−1 is similar to the
behaviour of the critical wetting transverse correlation
length written in terms of the contact angle ξ‖(θ) ∼ θ−1.
Interestingly one still finds the critical behavior (15)
if one improves the apex calculation to account for a
position-dependent stiffness coefficient [17]. That is, even
if planar short-ranged wetting transitions are driven first-
order by a stiffness instability mechanism, the apex still
mimics the properties of critical wetting.

We finish with comments relevant to experimental
studies on periodic systems. Close to bulk coexistence
the interfacial height above a single, infinite apex shows
scaling behavior lA ∼ α−βAW(1)(δµα

−∆A) with gap ex-
ponent ∆A = 2 + βA. On a periodic array (with
wavelength L) finite size effects modifies this to lA ∼
α−βAW(2)(δµα

−∆A , L/ξco
‖ ), where ξco

‖ ∼ δµ−νco
‖ is the

transverse correlation length for planar complete wetting.

Thus the adsorption above the apex tip only behaves
like a single apex for sufficiently large L ≫ ξco

‖ . This is
equivalent to the requirement that the vertical distance
between the apex tip and the wedge trough, αL/2, is
much larger that the local height of the interface above
the wedge bottom lw ∼ Σα2/2βδµ(ρl − ρg).

In this paper we have shown that complete wetting at
an apex mimics precisely planar critical wetting. Taken
together with similar covariance relations for wedge fill-
ing, there is clear evidence of a fundamental connection
between contact and geometric angles. Further work is
required to understand such covariances at a deeper level.
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