4,566 research outputs found

    Total scattering descriptions of local and cooperative distortions in the oxide spinel (Mg,Cu)Cr2O4 with dilute Jahn-Teller ions

    Full text link
    The normal spinel oxide MgCr2O4 is cubic at room temperature while the normal spinel CuCr2O4 is tetragonal as a consequence of the Jahn-Teller nature of Cu2+ on the tetrahedral sites. Despite different end-member structures, complete solid solutions of Mg_{1-x}Cu_xCr2O4 can be prepared that display a first-order structural transition with composition x = 0.43 at room temperature. Reverse Monte Carlo analysis of total neutron scattering on data acquired between 300 K and 15 K on samples with x = 0.10, 0.20, and 0.43 provides unbiased local and average structure descriptions of the samples, including an understanding of the transition from local Jahn-Teller distortions in the cubic phase to cooperative distortions that result in a tetragonal structure. Distributions of continuous symmetry measures help to understand and distinguish distorted and undistorted coordination around the tetrahedral site in the solid solutions. Magnetic exchange bias is observed in field-cooled hysteresis loops of samples with dilute Cu2+ concentration and in samples with tetragonal--cubic phase coexistence around 300 K.Comment: 10 pages, 14 figure

    Confusing Sterile Neutrinos with Deviation from Tribimaximal Mixing at Neutrino Telescopes

    Full text link
    We expound the impact of extra sterile species on the ultra high energy neutrino fluxes in neutrino telescopes. We use three types of well-known flux ratios and compare the values of these flux ratios in presence of sterile neutrinos, with those predicted by deviation from the tribimaximal mixing scheme. We show that in the upcoming neutrino telescopes, its easy to confuse between the signature of sterile neutrinos with that of the deviation from tribimaximal mixing. We also show that if the measured flux ratios acquire a value well outside the range predicted by the standard scenario with three active neutrinos only, it might be possible to tell the presence of extra sterile neutrinos by observing ultra high energy neutrinos in future neutrino telescopes.Comment: 22 pages, version to appear in Phys. Rev.

    ΔI=4\Delta I=4 and ΔI=8\Delta I=8 bifurcations in rotational bands of diatomic molecules

    Full text link
    It is shown that the recently observed ΔI=4\Delta I=4 bifurcation seen in superdeformed nuclear bands is also occurring in rotational bands of diatomic molecules. In addition, signs of a ΔI=8\Delta I=8 bifurcation, of the same order of magnitude as the ΔI=4\Delta I=4 one, are observed both in superdeformed nuclear bands and rotational bands of diatomic molecules.Comment: LaTex twice, 10 pages and 5 PS figures provided upon demand by the Author

    Some results on the eigenfunctions of the quantum trigonometric Calogero-Sutherland model related to the Lie algebra E6

    Get PDF
    The quantum trigonometric Calogero-Sutherland models related to Lie algebras admit a parametrization in which the dynamical variables are the characters of the fundamental representations of the algebra. We develop here this approach for the case of the exceptional Lie algebra E6.Comment: 17 pages, no figure

    Deep optical survey of the stellar content of Sh2-311 region

    Full text link
    The stellar content in and around Sh2-311 region have been studied using the deep optical observations as well as near-infrared (NIR) data from 2MASS. The region contains three clusters, viz. NGC 2467, Haffner 18 and Haffner 19. We have made an attempt to distinguish the stellar content of these individual regions as well as to re-determine their fundamental parameters such as distance, reddening, age, onto the basis of a new and more extended optical and infrared photometric data set. NGC 2467 and Haffner 19 are found to be located in the Perseus arm at the distances of 5.0 ±\pm 0.4 kpc and 5.7 ±\pm 0.4 kpc, respectively, whereas Haffner 18 is located at the distance of 11.2 ±\pm 1.0 kpc. The clusters NGC 2467 and Haffner 19 might have formed from the same molecular cloud, whereas the cluster Haffner 18 is located in the outer galactic arm, i.e. the Norma-Cygnus arm. We identify 8 class II young stellar objects (YSOs) using the NIR (JH)/(HK)(J - H)/(H - K) two colour diagram. We have estimated the age and mass of the YSOs identified in the present work and those by Snider et al. (2009) using the V/(VI)V/(V - I) colour-magnitude diagram. The estimated ages and mass range of the majority of the YSOs are \lesssim1 Myr and \sim0.4 - 3.5 \msun, respectively, indicating that these sources could be T-Tauri stars or their siblings. Spatial distribution of the YSOs shows that some of the YSOs are distributed around the H II region Sh2-311, suggesting a triggered star formation at its periphery.Comment: 19 pages, 13 figures, 9 table; Accepted for publication in New Astronom

    Finite size scaling for quantum criticality using the finite-element method

    Full text link
    Finite size scaling for the Schr\"{o}dinger equation is a systematic approach to calculate the quantum critical parameters for a given Hamiltonian. This approach has been shown to give very accurate results for critical parameters by using a systematic expansion with global basis-type functions. Recently, the finite element method was shown to be a powerful numerical method for ab initio electronic structure calculations with a variable real-space resolution. In this work, we demonstrate how to obtain quantum critical parameters by combining the finite element method (FEM) with finite size scaling (FSS) using different ab initio approximations and exact formulations. The critical parameters could be atomic nuclear charges, internuclear distances, electron density, disorder, lattice structure, and external fields for stability of atomic, molecular systems and quantum phase transitions of extended systems. To illustrate the effectiveness of this approach we provide detailed calculations of applying FEM to approximate solutions for the two-electron atom with varying nuclear charge; these include Hartree-Fock, density functional theory under the local density approximation, and an "exact"' formulation using FEM. We then use the FSS approach to determine its critical nuclear charge for stability; here, the size of the system is related to the number of elements used in the calculations. Results prove to be in good agreement with previous Slater-basis set calculations and demonstrate that it is possible to combine finite size scaling with the finite-element method by using ab initio calculations to obtain quantum critical parameters. The combined approach provides a promising first-principles approach to describe quantum phase transitions for materials and extended systems.Comment: 15 pages, 19 figures, revision based on suggestions by referee, accepted in Phys. Rev.

    The Generalized Second Law of Thermodynamics in Cosmology

    Full text link
    A classical and quantum mechanical generalized second law of thermodynamics in cosmology implies constraints on the effective equation of state of the universe in the form of energy conditions, obeyed by many known cosmological solutions, and is compatible with entropy bounds which forbid certain cosmological singularities. In string cosmology the second law provides new information about the existence of non-singular solutions, and the nature of the graceful exit transition from dilaton-driven inflation.Comment: 12 pages, no figure

    Staggering effects in nuclear and molecular spectra

    Get PDF
    It is shown that the recently observed Delta J = 2 staggering effect (i.e. the relative displacement of the levels with angular momenta J, J+4, J+8, ..., relatively to the levels with angular momenta J+2, J+6, J+10, ...) seen in superdeformed nuclear bands is also occurring in certain electronically excited rotational bands of diatomic molecules (YD, CrD, CrH, CoH), in which it is attributed to interband interactions (bandcrossings). In addition, the Delta J = 1 staggering effect (i.e. the relative displacement of the levels with even angular momentum J with respect to the levels of the same band with odd J) is studied in molecular bands free from Delta J = 2 staggering (i.e. free from interband interactions/bandcrossings). Bands of YD offer evidence for the absence of any Delta J = 1 staggering effect due to the disparity of nuclear masses, while bands of sextet electronic states of CrD demonstrate that Delta J = 1 staggering is a sensitive probe of deviations from rotational behaviour, due in this particular case to the spin-rotation and spin-spin interactions.Comment: LaTeX, 16 pages plus 30 figures given in separate .ps files. To appear in the proceedings of the 4th European Workshop on Quantum Systems in Chemistry and Physics (Marly-le-Roi, France, 1999), ed. J. Maruani et al. (Kluwer, Dordrecht
    corecore