6,981 research outputs found

    The Base Engine for Solar Stirling Power

    Get PDF
    A new concept in Stirling engine technology is embodied in the base engine now being developed at Stirling Thermal Motors, Inc. This is a versatile energy conversion unit suitable for many different applications and heat sources. The base engine, rated 40 kW at 2800 RPM, is a four-cylinder, double-acting variable displacement Stirling engine with pressurized crankcase and rotating shaft seal. Remote-heating technology is incorporated with a stacked-heat-exchanger configuration and a liquid metal heat pipe connected to a distinctly separate combustor or other heat source. High efficiency over a wide range of operating conditions, long life, low manufacturing cost and low material cost are specifically emphasized. The base engine, its design philosophy and approach, its projected performance, and some of its more attractive applications are described

    Helicity Amplitudes for Charmonium Production in Hadron-Hadron and Photon-Hadron Collisions

    Get PDF
    We present the gluon-gluon and photon-gluon helicity amplitudes for color singlet and octet charmonium production in polarized and unpolarized hadron-hadron and photon-hadron collisions.Comment: 11 pages amstex no figure

    Fabrication and electrical transport properties of embedded graphite microwires in a diamond matrix

    Full text link
    Micrometer width and nanometer thick wires with different shapes were produced \approx 3~\upmum below the surface of a diamond crystal using a microbeam of He+^+ ions with 1.8~MeV energy. Initial samples are amorphous and after annealing at T1475T\approx 1475~K, the wires crystallized into a graphite-like structures, according to confocal Raman spectroscopy measurements. The electrical resistivity at room temperature is only one order of magnitude larger than the in-plane resistivity of highly oriented pyrolytic bulk graphite and shows a small resistivity ratio(ρ(2K)/ρ(315K)1.275\rho(2{\rm K})/\rho(315{\rm K}) \approx 1.275). A small negative magnetoresistance below T=200T=200~K was measured and can be well understood taking spin-dependent scattering processes into account. The used method provides the means to design and produce millimeter to micrometer sized conducting circuits with arbitrary shape embedded in a diamond matrix.Comment: 12 pages, 5 figures, to be published in Journal of Physics D: Applied Physics (Feb. 2017

    Phase behavior and structure of model colloid-polymer mixtures confined between two parallel planar walls

    Full text link
    Using Gibbs ensemble Monte Carlo simulations and density functional theory we investigate the fluid-fluid demixing transition in inhomogeneous colloid-polymer mixtures confined between two parallel plates with separation distances between one and ten colloid diameters covering the complete range from quasi two-dimensional to bulk-like behavior. We use the Asakura-Oosawa-Vrij model in which colloid-colloid and colloid-polymer interactions are hard-sphere like, whilst the pair potential between polymers vanishes. Two different types of confinement induced by a pair of parallel walls are considered, namely either through two hard walls or through two semi-permeable walls that repel colloids but allow polymers to freely penetrate. For hard (semi-permeable) walls we find that the capillary binodal is shifted towards higher (lower) polymer fugacities and lower (higher) colloid fugacities as compared to the bulk binodal; this implies capillary condensation (evaporation) of the colloidal liquid phase in the slit. A macroscopic treatment is provided by a novel symmetric Kelvin equation for general binary mixtures, based on the proximity in chemical potentials of statepoints at capillary coexistence and the reference bulk coexistence. Results for capillary binodals compare well with those obtained from the classic version of the Kelvin equation due to Evans and Marini Bettolo Marconi [J. Chem. Phys. 86, 7138 (1987)], and are quantitatively accurate away from the fluid-fluid critical point, even at small wall separations. For hard walls the density profiles of polymers and colloids inside the slit display oscillations due to packing effects for all statepoints. For semi-permeable walls either similar structuring or flat profiles are found, depending on the statepoint considered.Comment: 15 pages, 13 figure

    Can Polymer Coils be modeled as "Soft Colloids"?

    Get PDF
    We map dilute or semi-dilute solutions of non-intersecting polymer chains onto a fluid of ``soft'' particles interacting via a concentration dependent effective pair potential, by inverting the pair distribution function of the centers of mass of the initial polymer chains. A similar inversion is used to derive an effective wall-polymer potential; these potentials are combined to successfully reproduce the calculated exact depletion interaction induced by non-intersecting polymers between two walls. The mapping opens up the possibility of large-scale simulations of polymer solutions in complex geometries.Comment: 4 pages, 3 figures ReVTeX[epsfig,multicol,amssymb] references update

    Activity-based differentiation of pathologists’ workload in surgical pathology

    Get PDF
    Adequate budget control in pathology practice requires accurate allocation of resources. Any changes in types and numbers of specimens handled or protocols used will directly affect the pathologists’ workload and consequently the allocation of resources. The aim of the present study was to develop a model for measuring the pathologists’ workload that can take into account the changes mentioned above. The diagnostic process was analyzed and broken up into separate activities. The time needed to perform these activities was measured. Based on linear regression analysis, for each activity, the time needed was calculated as a function of the number of slides or blocks involved. The total pathologists’ time required for a range of specimens was calculated based on standard protocols and validated by comparing to actually measured workload. Cutting up, microscopic procedures and dictating turned out to be highly correlated to number of blocks and/or slides per specimen. Calculated workload per type of specimen was significantly correlated to the actually measured workload. Modeling pathologists’ workload based on formulas that calculate workload per type of specimen as a function of the number of blocks and slides provides a basis for a comprehensive, yet flexible, activity-based costing system for pathology

    Slowing heavy, ground-state molecules using an alternating gradient decelerator

    Get PDF
    Cold supersonic beams of molecules can be slowed down using a switched sequence of electrostatic field gradients. The energy to be removed is proportional to the mass of the molecules. Here we report deceleration of YbF, which is 7 times heavier than any molecule previously decelerated. We use an alternating gradient structure to decelerate and focus the molecules in their ground state. We show that the decelerator exhibits the axial and transverse stability required to bring these molecules to rest. Our work significantly extends the range of molecules amenable to this powerful method of cooling and trapping.Comment: 4 pages, 5 figure

    Post-silicon tuning capabilities of 45nm low-power CMOS digital circuits

    Get PDF
    Adaptive circuit techniques enable modification of power-performance efficient circuit operation. Yet it is unclear if such techniques remain effective in modern deep-submicron CMOS. In this paper we examine the technological boundaries of supply voltage scaling and body biasing in 45nm low-power CMOS. We demonstrate that there exists an effective tuning range for power-performance and performance variability control. Our analysis is supported by ring oscillator test-chip measurements

    Planned dose of intensity modulated proton beam therapy versus volumetric modulated arch therapy to tooth-bearing regions

    Get PDF
    Background: Intensity modulated proton beam therapy (IMPT) for head and neck cancer offers dosimetric benefits for the organs at risk when compared to photon-based volumetric modulated arch therapy (VMAT). However, limited data exists about the potential benefits of IMPT for tooth-bearing regions. The aim of this study was to compare the IMPT and VMAT radiation dosimetrics of the tooth-bearing regions in head and neck cancer patients. Also, we aimed to identify prognostic factors for a cumulative radiation dose of ≥40 Gy on the tooth-bearing areas, which is considered the threshold dose for prophylactic dental extractions. Methods: A total of 121 head and neck cancer patients were included in this retrospective analysis of prospectively collected data. We compared the average Dmean values of IMPT versus VMAT of multiple tooth-bearing regions in the same patients. Multivariate logistic regression analysis was performed for receiving a cumulative radiation dose of ≥40 Gy to the tooth-bearing regions (primary endpoint) in both VMAT and IMPT. Results: A lower Dmean was seen after applying IMPT to the tooth-bearing tumour regions (p &lt; 0.001). Regarding VMAT, oral cavity tumours, T3-T4 tumours, molar regions in the mandible, and regions ipsilateral to the tumour were risk factors for receiving a cumulative radiation dose of ≥40 Gy. Conclusions: IMPT significantly reduces the radiation dose to the tooth-bearing regions.</p
    corecore