265 research outputs found

    Influence of activator type on reaction kinetics, setting time, and compressive strength of alkali-activated mineral wools

    Get PDF
    Alkali activation is a promising utilisation route for mineral wool wastes, due to suitable chemical composition, high reactivity, and surface area. One key factor in the development of alkali-activated binders is the selection of the suitable alkali activator. Here, the effect of sodium hydroxide, sodium silicate, sodium aluminate, and sodium carbonate solution on the alkali-activation kinetics of two main types of mineral wools, stone wool and glass wool, is investigated. Setting time and compressive strength development results are presented, which are explained and discussed in the context of isothermal calorimeter data obtained at temperature of 40 °C. Sodium hydroxide and sodium silicate solutions provided fast reaction with both mineral wools, evidenced by high heat release, high early strength, and fast setting. The reaction with sodium aluminate solution took several days to initiate, but it produced high compressive strength after 28 days of curing with both mineral wools. Glass wool reacted and hardened rapidly with sodium carbonate solution, but stone wool reacted slowly with sodium carbonate and exhibited a low extent of reaction, likely due to lower extent of reaction of stone wool under less alkaline conditions. These results show that mineral wool alkali activation kinetics and binder gel formation are controlled by the activator type and highlight the importance of choosing the most appropriate activator for each desired application

    Nanostructural evolution of alkali-activated mineral wools

    Get PDF
    Mineral wools are the most widely used building insulation material worldwide. Annually, 2.5 million tonnes of mineral wool waste are generated in the EU alone, and this is a largely unutilised material that is landfilled or incinerated. However, mineral wool wastes are promising precursors for production of alkali-activated cementitious binders due to their favourable chemical and mineralogical composition and high surface area. Alkali-activation is therefore a valuable route for valorisation of large quantities of mineral wool waste. This study resolves the phase assemblage and nanostructure of reaction products formed upon alkali activation of stone wool and glass wool by sodium hydroxide and sodium silicate solutions with X-ray diffraction, electron microscopy and solid state nuclear magnetic resonance spectroscopy experiments probing ^27Al and ^29Si. The stone wool-based alkali-activated binder comprises an amorphous sodium- and aluminium-substituted calcium silicate hydrate (C-(N-)A-S-H) gel, an amorphous sodium aluminosilicate hydrate (N-A-S-H) gel and small amounts of the layered double hydroxide phase quintinite and zeolite F. The glass wool-based alkali-activated binder comprises an amorphous Ca- and Al-substituted sodium silicate (N-(C-)(A-)S–H) gel. Gel chemical composition and reaction kinetics of alkali-activated mineral wools are shown to be dependent on the activating solution chemistry, with reaction rate and extent promoted by inclusion of a source of soluble Si in the reaction mixture. This work provides the most advanced description of the chemistry and structure of alkali-activated mineral wools to date, yielding new insight that is essential in developing valorisation pathways for mineral wools by alkali activation and providing significant impetus for development of sustainable construction materials

    Microstructure as a key parameter for understanding chloride ingress in alkali-activated mortars

    Get PDF
    This study aims to evaluate the influence of microstructural properties on the chloride diffusion resistance of alkali-activated materials (AAMs) based on blast furnace slag and/or fly ash, with variable activator doses (represented as Na2O%). Resistance to chloride penetration was tested using accelerated chloride penetration (NT BUILD 443) and chloride migration (NT BUILD 492) tests. Addition of slag to alkali-activated mortars mainly based on fly ash reduced porosity and chloride permeability. Chloride penetration decreased with increasing Na2O%, but porosity and pore structure did not follow the same trend. The pore threshold (dth) and critical pore radius (rcrit) determined by mercury intrusion porosimetry had a good correlation with the chloride diffusion coefficient. Both the quantification of reaction products and the correlation between chloride penetration and pore surface area indicated that physical chloride adsorption on the C-A-S-H/N-A-S-H gel surfaces predominated over chemical chloride binding

    Steel corrosion in reinforced alkali-activated materials

    Get PDF
    The development of alkali-activated materials (AAMs) as an alternative to Portland cement (PC) has seen significant progress in the past decades. However, there still remains significant uncertainty regarding their long term performance when used in steel-reinforced structures. The durability of AAMs in such applications depends strongly on the corrosion behaviour of the embedded steel reinforcement, and the experimental data in the literature are limited and in some cases inconsistent. This letter elucidates the role of the chemistry of AAMs on the mechanisms governing passivation and chloride-induced corrosion of the steel reinforcement, to bring a better understanding of the durability of AAM structures exposed to chloride. The corrosion of the steel reinforcement in AAMs differs significantly from observations in PC; the onset of pitting (or the chloride ‘threshold’ value) depends strongly on the alkalinity, and the redox environment, of these binders. Classifications or standards used to assess the severity of steel corrosion in PC appear not to be directly applicable to AAMs due to important differences in pore solution chemistry and phase assemblage

    Evolution of phase assemblage of blended magnesium potassium phosphate cement binders at 200 degrees and 1000 degrees C

    Get PDF
    The fire performance of magnesium potassium phosphate cement (MKPC) binders blended with fly ash (FA) and ground granulated blast furnace slag (GBFS) was investigated up to 1000°C using X-ray diffraction, thermogravimetric analysis and SEM techniques. The FA/MKPC and GBFS/MKPC binders dehydrate above 200°C to form amorphous KMgPO4, concurrent with volumetric and mass changes. Above 1000°C, additional crystalline phases were formed and microstructural changes occurred, although no cracking or spalling of the samples was observed. These results indicate that FA/MKPC and GBFS/MKPC binders are expected to have satisfactory fire performance under the fire scenario conditions relevant to the operation of a UK or other geological disposal facility

    Aberrant visual pathway development in albinism: from retina to cortex

    Get PDF
    Albinism refers to a group of genetic abnormalities in melanogenesis that are associated neuronal misrouting through the optic chiasm. Previous imaging studies have shown structural alterations at different points along the visual pathway of people with albinism (PWA) including foveal hypoplasia, optic nerve and chiasm size alterations and visual cortex reorganisation, but fail to provide a holistic in-vivo characterisation of the visual neurodevelopmental alterations from retina to visual cortex. We perform quantitative assessment of visual pathway structure and function in 23 PWA and 20 matched controls using optical coherence tomography (OCT), volumetric magnetic resonance imaging (MRI), diffusion tensor imaging and visual evoked potentials (VEP). PWA had a higher streamline decussation index (percentage of total tractography streamlines decussating at the chiasm) compared to controls (Z=-2.24, p=0.025), and streamline decussation index correlated weakly significantly with inter-hemispheric asymmetry measured using VEP (r=0.484, p=0.042). For PWA, a significant correlation was found between foveal development index and total number of streamlines (r=0.662, p less than 0.001). Optic nerve (p=0.001) and tract (p=0.010) width, and chiasm width (P less than 0.001), area (p=0.006) and volume (p=0.005), were significantly smaller in PWA compared to controls. Significant positive correlations were found between peri-papillary retinal nerve fibre layer thickness and optic nerve (r=0.642, p less than 0.001) and tract (r=0.663, p less than 0.001) width. Occipital pole cortical thickness was 6.88% higher (Z=-4.10, p less than 0.001) in PWA and was related to anterior visual pathway structures including foveal retinal pigment epithelium complex thickness (r=-0.579, p=0.005), optic disc (r=0.478, p=0.021) and rim areas (r=0.597, p=0.003). We were unable to demonstrate a significant relationship between OCT-derived foveal or optic nerve measures and MRI-derived chiasm size or streamline decussation index. Non-invasive imaging techniques demonstrate aberrant development throughout the visual pathways of PWA compared to controls. Our novel tractographic demonstration of altered chiasmatic decussation in PWA corresponds to VEP measured cortical asymmetry and is consistent with chiasmatic misrouting in albinism. We also demonstrate a significant relationship between retinal pigment epithelium and visual cortex thickness indicating that retinal pigmentation defects in albinism lead to downstream structural reorganisation of the visual cortex

    Alkali-activated slag cements produced with a blended sodium carbonate/sodium silicate activator

    Get PDF
    An alkali-activated slag cement produced with a blend of sodium carbonate/sodium silicate activator was characterised. This binder hardened within 12 h and achieved a compressive strength of 20 MPa after 24 h of curing under ambient conditions, which is associated with the formation of an aluminium substituted calcium silicate hydrate as the main reaction product. Carbonates including pirssonite, vaterite, aragonite and calcite were identified along with the zeolites hydroxysodalite and analcime at early times of reaction. The partial substitution of sodium carbonate by sodium silicate reduces the concentration of carbonate ions in the pore solution, increasing the alkalinity of the system compared with a solely carbonate-activated paste, accelerating the kinetics of reaction and supplying additional silicate species to react with the calcium dissolving from the slag as the reaction proceeds. These results demonstrate that this blend of activators can be used effectively for the production of high-strength alkali-activated slag cements, with a microstructure comparable to what has been identified in aged sodium-carbonate-activated slag cements but without the extended setting time reaction usually identified when using this salt as an alkali activator

    Hydration kinetics and products of MgO-activated blast furnace slag

    Get PDF
    Hydration kinetics and products of MgO-activated slag are investigated by employing multiple analytical characterization techniques and thermodynamic modelling. The main hydration products of this cement are a calcium-aluminosilicate hydrate type gel, ettringite, monosulfate, hydrotalcite, brucite, and a third aluminate hydrate, while the extent of reaction and formation of reaction products significantly varied by MgO dosages. Higher dosage of MgO increased the degree of reaction of slag, and led to a higher population of Al in the octahedral region, which can be attributed to greater competition for Al required for the formation of hydrotalcite. The experimental and simulated volume of the solid binder increased as the MgO dosage increased, showing a good correlation with the strength increase of the samples with higher MgO dosage

    Generalized Structural Description of Calcium–Sodium Aluminosilicate Hydrate Gels: The Cross-Linked Substituted Tobermorite Model

    Get PDF
    Structural models for the primary strength and durability-giving reaction product in modern cements, a calcium (alumino)silicate hydrate gel, have previously been based solely on non-cross-linked tobermorite structures. However, recent experimental studies of laboratory-synthesized and alkali-activated slag (AAS) binders have indicated that the calcium–sodium aluminosilicate hydrate [C-(N)-A-S-H] gel formed in these systems can be significantly cross-linked. Here, we propose a model that describes the C-(N)-A-S-H gel as a mixture of cross-linked and non-cross-linked tobermorite-based structures (the cross-linked substituted tobermorite model, CSTM), which can more appropriately describe the spectroscopic and density information available for this material. Analysis of the phase assemblage and Al coordination environments of AAS binders shows that it is not possible to fully account for the chemistry of AAS by use of the assumption that all of the tetrahedral Al is present in a tobermorite-type C-(N)-A-S-H gel, due to the structural constraints of the gel. Application of the CSTM can for the first time reconcile this information, indicating the presence of an additional activation product that contains highly connected four-coordinated silicate and aluminate species. The CSTM therefore provides a more advanced description of the chemistry and structure of calcium–sodium aluminosilicate gel structures than that previously established in the literature

    Real-Time High-Resolution X-ray Imaging and Nuclear Magnetic Resonance Study of the Hydration of Pure and Na-Doped C 3

    Full text link
    This study details the differences in real-time hydration between pure tricalcium aluminate (cubic C{sub 3}A or 3CaO {center_dot} Al{sub 2}O{sub 3}) and Na-doped tricalcium aluminate (orthorhombic C{sub 3}A or Na{sub 2}Ca{sub 8}Al{sub 6}O{sub 18}), in aqueous solutions containing sulfate ions. Pure phases were synthesized in the laboratory to develop an independent benchmark for the reactions, meaning that their reactions during hydration in a simulated early age cement pore solution (saturated with respect to gypsum and lime) were able to be isolated. Because the rate of this reaction is extremely rapid, most microscopy methods are not adequate to study the early phases of the reactions in the early stages. Here, a high-resolution full-field soft X-ray imaging technique operating in the X-ray water window, combined with solution analysis by {sup 27}Al nuclear magnetic resonance (NMR) spectroscopy, was used to capture information regarding the mechanism of C{sub 3}A hydration during the early stages. There are differences in the hydration mechanism between the two types of C{sub 3}A, which are also dependent on the concentration of sulfate ions in the solution. The reactions with cubic C{sub 3}A (pure) seem to be more influenced by higher concentrations of sulfate ions, forming smaller ettringite needles at a slower pace than the orthorhombic C{sub 3}A (Na-doped) sample. The rate of release of aluminate species into the solution phase is also accelerated by Na doping
    • 

    corecore