12,213 research outputs found
Numerical Simulation of III-V Solar Cells Using D-AMPS
Numerical simulation of devices plays a crucial role in their design, performance prediction, and comprehension of the fundamental phenomena ruling their operation. Here, we present results obtained using the code D-AMPS-1D, that was conveniently modified to consider the particularities of III-V solar cell devices. This work, that is a continuation of a previous paper regarding solar cells for space applications, is focused on solar cells structures than find application for terrestrial use under concentrated solar illumination. The devices were fabricated at the Solar Energy Institute of the Technical University of Madrid (UPM). The first simulations results on InGaP cells are presented. The influence of band offsets and band bending at the window-emitter interface on the quantum efficiency was studied. A remarkable match of the experimental quantum efficiency was obtained. Finally, numerical simulation of single junction n-p InGaP-Ge solar cells was performed
Anti M-Weierstrass function sequences
Large algebraic structures are found inside the space of sequences of
continuous functions on a compact interval having the property that, the series
defined by each sequence converges absolutely and uniformly on the interval but
the series of the upper bounds diverges. So showing that there exist many
examples satisfying the conclusion but not the hypothesis of the Weierstrass
M-test
Periodic orbit bifurcations and scattering time delay fluctuations
We study fluctuations of the Wigner time delay for open (scattering) systems
which exhibit mixed dynamics in the classical limit. It is shown that in the
semiclassical limit the time delay fluctuations have a distribution that
differs markedly from those which describe fully chaotic (or strongly
disordered) systems: their moments have a power law dependence on a
semiclassical parameter, with exponents that are rational fractions. These
exponents are obtained from bifurcating periodic orbits trapped in the system.
They are universal in situations where sufficiently long orbits contribute. We
illustrate the influence of bifurcations on the time delay numerically using an
open quantum map.Comment: 9 pages, 3 figures, contribution to QMC200
Topological defects and misfit strain in magnetic stripe domains of lateral multilayers with perpendicular magnetic anisotropy
Stripe domains are studied in perpendicular magnetic anisotropy films
nanostructured with a periodic thickness modulation that induces the lateral
modulation of both stripe periods and inplane magnetization. The resulting
system is the 2D equivalent of a strained superlattice with properties
controlled by interfacial misfit strain within the magnetic stripe structure
and shape anisotropy. This allows us to observe, experimentally for the first
time, the continuous structural transformation of a grain boundary in this 2D
magnetic crystal in the whole angular range. The magnetization reversal process
can be tailored through the effect of misfit strain due to the coupling between
disclinations in the magnetic stripe pattern and domain walls in the in-plane
magnetization configuration
Double percolation effects and fractal behavior in magnetic/superconducting hybrids
Perpendicular magnetic anisotropy ferromagnetic/ superconducting (FM/SC)
bilayers with a labyrinth domain structure are used to study nucleation of
superconductivity on a fractal network, tunable through magnetic history. As
clusters of reversed domains appear in the FM layer, the SC film shows a
percolative behavior that depends on two independent processes: the arrangement
of initial reversed domains and the fractal geometry of expanding clusters. For
a full labyrinth structure, the behavior of the upper critical field is typical
of confined superconductivity on a fractal network.Comment: 15 pages, 5 figure
High-temperature phase transitions in SrBi_2Ta_2O_9 film: a study by THz spectroscopy
Time-domain THz transmission experiment was performed on a film deposited on sapphire substrate. Temperatures between 300
and 923 K were investigated and complex permittivity spectra of the film were
determined. The lowest frequency optic phonon near 28 cm reveals a slow
monotonic decrease in frequency on heating with no significant anomaly near the
phase transitions. We show that the dielectric anomaly near the ferroelectric
phase transition can be explained by slowing down of a relaxational mode,
observed in the THz spectra. A second harmonic generation signal observed in a
single crystal confirms a loss of center of symmetry in the ferroelectric phase
and a presence of polar clusters in the intermediate ferroelastic phase.Comment: subm. to J. Phys.: Condens. Matte
Controlled nucleation of topological defects in the stripe domain patterns of Lateral multilayers with Perpendicular Magnetic Anisotropy: competition between magnetostatic, exchange and misfit interactions
Magnetic lateral multilayers have been fabricated on weak perpendicular
magnetic anisotropy amorphous Nd-Co films in order to perform a systematic
study on the conditions for controlled nucleation of topological defects within
their magnetic stripe domain pattern. A lateral thickness modulation of period
is defined on the nanostructured samples that, in turn, induces a lateral
modulation of both magnetic stripe domain periods and average
in-plane magnetization component . Depending on lateral multilayer
period and in-plane applied field, thin and thick regions switch independently
during in-plane magnetization reversal and domain walls are created within the
in-plane magnetization configuration coupled to variable angle grain boundaries
and disclinations within the magnetic stripe domain patterns. This process is
mainly driven by the competition between rotatable anisotropy (that couples the
magnetic stripe pattern to in-plane magnetization) and in-plane shape
anisotropy induced by the periodic thickness modulation. However, as the
structural period becomes comparable to magnetic stripe period ,
the nucleation of topological defects at the interfaces between thin and thick
regions is hindered by a size effect and stripe domains in the different
thickness regions become strongly coupled.Comment: 10 pages, 7 figures, submitted to Physical Review
Semiclassical structure of chaotic resonance eigenfunctions
We study the resonance (or Gamow) eigenstates of open chaotic systems in the
semiclassical limit, distinguishing between left and right eigenstates of the
non-unitary quantum propagator, and also between short-lived and long-lived
states. The long-lived left (right) eigenstates are shown to concentrate as
on the forward (backward) trapped set of the classical dynamics.
The limit of a sequence of eigenstates is found
to exhibit a remarkably rich structure in phase space that depends on the
corresponding limiting decay rate. These results are illustrated for the open
baker map, for which the probability density in position space is observed to
have self-similarity properties.Comment: 4 pages, 4 figures; some minor corrections, some changes in
presentatio
Bilinear and quadratic Hamiltonians in two-mode cavity quantum electrodynamics
In this work we show how to engineer bilinear and quadratic Hamiltonians in
cavity quantum electrodynamics (QED) through the interaction of a single driven
two-level atom with cavity modes. The validity of the engineered Hamiltonians
is numerically analyzed even considering the effects of both dissipative
mechanisms, the cavity field and the atom. The present scheme can be used, in
both optical and microwave regimes, for quantum state preparation, the
implementation of quantum logical operations, and fundamental tests of quantum
theory.Comment: 11 pages, 3 figure
- …