5,260 research outputs found

    Performance estimation of interior permanent-magnet brushless motors using the voltage-driven flux-MMF diagram

    Get PDF
    The flux-magnetomotive force (flux-MMF) diagram, or "energy conversion loop," is a powerful tool for computing the parameters of saturated interior permanent-magnet brushless motors, especially when the assumptions underlying classical dq theory are not valid, as is often the case in modern practice. Efficient finite-element computation of the flux-MMF diagram is possible when the motor current is known a priori, but in high-speed operation the current regulator can lose control of the current waveform and the computation becomes "voltage-driven" rather than "current-driven." This paper describes an efficient method for estimating the motor performance-average torque, inductances-by solving the voltage-driven problem. It presents experimental validation for a two-pole brushless interior permanent-magnet motor. The paper also discusses the general conditions under which this method is appropriate, and compares the method with alternative approaches

    Spectral properties of the largest asteroids associated with Taurid Complex

    Full text link
    We obtained spectra of six of the largest asteroids (2201, 4183, 4486, 5143, 6063, and 269690) associated with Taurid complex. The observations were made with the IRTF telescope equipped with the spectro-imager SpeX. Their taxonomic classification is made using Bus-DeMeo taxonomy. The asteroid spectra are compared with the meteorite spectra from the Relab database. Mineralogical models were applied to determine their surface composition. All the spectral analysis is made in the context of the already published physical data. Five of the objects studied in this paper present spectral characteristics similar to the S taxonomic complex. The spectra of ordinary chondrites (spanning H, L, and LL subtypes) are the best matches for these asteroid spectra. {\bf The asteroid} (269690) 1996 RG3 presents a flat featureless spectrum which could be associated to a primitive C-type object. The increased reflectance above 2.1 microns constrains its geometrical albedo to a value around 0.03. While there is an important dynamical grouping among the Taurid Complex asteroids, the spectral data of the largest objects do not support a common cometary origin. Furthermore, there are significant variations between the spectra acquired until now.Comment: Accepted for publication in A&

    Implications of Teleportation for Nonlocality

    Full text link
    Adopting an approach similar to that of Zukowski [Phys. Rev. A 62, 032101 (2000)], we investigate connections between teleportation and nonlocality. We derive a Bell-type inequality pertaining to the teleportation scenario and show that it is violated in the case of teleportation using a perfect singlet. We also investigate teleportation using `Werner states' of the form x P + (1-x) I/4, where P is the projector corresponding to a singlet state and I is the identity. We find that our inequality is violated, implying nonlocality, if x > 1/sqrt(2). In addition, we extend Werner's local hidden variable model to simulation of teleportation with the x = 1/2 Werner state. Thus teleportation using this state does not involve nonlocality even though the fidelity achieved is 3/4 which is greater than the `classical limit' of 2/3. Finally, we comment on a result of Gisin's and offer some philosophical remarks on teleportation and nonlocality generally.Comment: 10 pages, no figures. Title changed to accord with Phys. Rev. A version. A note and an extra reference have been added. Journal reference adde

    Dust in dwarf galaxies: The case of NGC 4214

    Get PDF
    We have carried out a detailed modelling of the dust heating and emission in the nearby, starbursting dwarf galaxy NGC 4214. Due to its proximity and the great wealth of data from the UV to the millimeter range (from GALEX, HST, {\it Spitzer}, Herschel, Planck and IRAM) it is possible to separately model the emission from HII regions and their associated photodissociation regions (PDRs) and the emission from diffuse dust. Furthermore, most model parameters can be directly determined from the data leaving very few free parameters. We can fit both the emission from HII+PDR regions and the diffuse emission in NGC 4214 with these models with "normal" dust properties and realistic parameters.Comment: 4pages, 3 figures. To appear in 'The Spectral Energy Distribution of Galaxies' Proceedings IAU Symposium No 284, 201

    Scalar and tensorial topological matter coupled to (2+1)-dimensional gravity:A.Classical theory and global charges

    Full text link
    We consider the coupling of scalar topological matter to (2+1)-dimensional gravity. The matter fields consist of a 0-form scalar field and a 2-form tensor field. We carry out a canonical analysis of the classical theory, investigating its sectors and solutions. We show that the model admits both BTZ-like black-hole solutions and homogeneous/inhomogeneous FRW cosmological solutions.We also investigate the global charges associated with the model and show that the algebra of charges is the extension of the Kac-Moody algebra for the field-rigid gauge charges, and the Virasoro algebrafor the diffeomorphism charges. Finally, we show that the model can be written as a generalized Chern-Simons theory, opening the perspective for its formulation as a generalized higher gauge theory.Comment: 40 page

    Quantum entanglement can be simulated without communication

    Full text link
    It has recently been shown that all causal correlations between two parties which output each one bit, a and b, when receiving each one bit, x and y, can be expressed as convex combinations of local correlations (i.e., correlations that can be simulated with local random variables) and non-local correlations of the form a+b=xy mod 2. We show that a single instance of the latter elementary non-local correlation suffices to simulate exactly all possible projective measurements that can be performed on the singlet state of two qubits, with no communication needed at all. This elementary non-local correlation thus defines some unit of non-locality, which we call a nl-bit.Comment: 4 pages RevTex, 3 eps figure

    Physics within a quantum reference frame

    Full text link
    We investigate the physics of quantum reference frames. Specifically, we study several simple scenarios involving a small number of quantum particles, whereby we promote one of these particles to the role of a quantum observer and ask what is the description of the rest of the system, as seen by this observer? We highlight the interesting aspects of such questions by presenting a number of apparent paradoxes. By unravelling these paradoxes we get a better understanding of the physics of quantum reference frames.Comment: 11 pages, 4 figures. v2: Published versio

    Why the Tsirelson bound?

    Full text link
    Wheeler's question 'why the quantum' has two aspects: why is the world quantum and not classical, and why is it quantum rather than superquantum, i.e., why the Tsirelson bound for quantum correlations? I discuss a remarkable answer to this question proposed by Pawlowski et al (2009), who provide an information-theoretic derivation of the Tsirelson bound from a principle they call 'information causality.'Comment: 17 page

    Generalized quantum measurements and local realism

    Full text link
    The structure of a local hidden variable model for experiments involving sequences of measurements rigorously is analyzed. Constraints imposed by local realism on the conditional probabilities of the outcomes of such measurement schemes are explicitly derived. The violation of local realism in the case of ``hidden nonlocality'' is illustrated by an operational example.Comment: Revtex, 12 pages; Some modifications of introduction has been made; a note stating that part of results had been obtained earlier by other authors, has been added; one postscript figure available at request from [email protected]
    • 

    corecore