201 research outputs found

    Mass coupling and Q−1ofimpurity−limitednormalQ^{-1} of impurity-limited normal ^3$He in a torsion pendulum

    Full text link
    We present results of the Q−1Q^{-1} and period shift, ΔP\Delta P, for 3^3He confined in a 98% nominal open aerogel on a torsion pendulum. The aerogel is compressed uniaxially by 10% along a direction aligned to the torsion pendulum axis and was grown within a 400 μ\mum tall pancake (after compression) similar to an Andronikashvili geometry. The result is a high QQ pendulum able to resolve Q−1Q^{-1} and mass coupling of the impurity-limited 3^3He over the whole temperature range. After measuring the empty cell background, we filled the cell above the critical point and observe a temperature dependent period shift, ΔP\Delta P, between 100 mK and 3 mK that is 2.9% of the period shift (after filling) at 100 mK. The Q−1Q^{-1} due to the 3^3He decreases by an order of magnitude between 100 mK and 3 mK at a pressure of 0.14±0.030.14\pm0.03 bar. We compare the observable quantities to the corresponding calculated Q−1Q^{-1} and period shift for bulk 3^3He.Comment: 8 pages, 3 figure

    Dissipation signatures of the normal and superfluid phases in torsion pendulum experiments with 3He in aerogel

    Get PDF
    We present data for energy dissipation factor (Q^{-1}) over a broad temperature range at various pressures of a torsion pendulum setup used to study 3He confined in a 98% open silica aerogel. Values for Q^{-1} above T_c are temperature independent and have a weak pressure dependence. Below T_c, a deliberate axial compression of the aerogel by 10% widens the range of metastability for a superfluid Equal Spin Pairing (ESP) state; we observe this ESP phase on cooling and the B phase on warming over an extended temperature region. While the dissipation for the B phase tends to zero as T goes to 0, Q^{-1} exhibits a peak value greater than that at T_c at intermediate temperatures. Values for Q^{-1} in the ESP phase are consistently higher than in the B phase and are proportional to \rho_s/\rho until the ESP to B phase transition is attained. We apply a viscoelastic collision-drag model, which couples the motion of the helium and the aerogel through a frictional relaxation time \tau_f. Our dissipation data is not sensitive to the damping due to the presumed small but non-zero value of \tau_f. The result is that an additional mechanism to dissipate energy not captured in the collision-drag model and related to the emergence of the superfluid order must exist. The extra dissipation below T_c is possibly associated with mutual friction between the superfluid phases and the clamped normal fluid. The pressure dependence of the measured dissipation in both superfluid phases is likely related to the pressure dependence of the gap structure of the "dirty" superfluid. The large dissipation in the ESP state is consistent with the phase being the A or the Polar with the order parameter nodes oriented in the plane of the cell and perpendicular to the aerogel anisotropy axis.Comment: 12 pages, 7 figure

    Low temperature acoustic properties of amorphous silica and the Tunneling Model

    Full text link
    Internal friction and speed of sound of a-SiO(2) was measured above 6 mK using a torsional oscillator at 90 kHz, controlling for thermal decoupling, non-linear effects, and clamping losses. Strain amplitudes e(A) = 10^{-8} mark the transition between the linear and non-linear regime. In the linear regime, excellent agreement with the Tunneling Model was observed for both the internal friction and speed of sound, with a cut-off energy of E(min) = 6.6 mK. In the non-linear regime, two different behaviors were observed. Above 10 mK the behavior was typical for non-linear harmonic oscillators, while below 10 mK a different behavior was found. Its origin is not understood.Comment: 1 tex file, 6 figure

    Dissipation in nanocrystalline-diamond nanomechanical resonators

    Get PDF
    We have measured the dissipation and frequency of nanocrystalline-diamond nanomechanical resonators with resonant frequencies between 13.7 MHz and 157.3 MHz, over a temperature range of 1.4–274 K. Using both magnetomotive network analysis and a time-domain ring-down technique, we have found the dissipation in this material to have a temperature dependence roughly following T^(0.2), with Q^(–1) ≈ 10^(–4) at low temperatures. The frequency dependence of a large dissipation feature at ~35–55 K is consistent with thermal activation over a 0.02 eV barrier with an attempt frequency of 10 GHz

    Heat Capacity of ^3He in Aerogel

    Full text link
    The heat capacity of pure ^3He in low density aerogel is measured at 22.5 bar. The superfluid response is simultaneously monitored with a torsional oscillator. A slightly rounded heat capacity peak, 65 mu K in width, is observed at the ^3He-aerogel superfluid transition, T_{ca}. Subtracting the bulk ^3He contribution, the heat capacity shows a Fermi-liquid form above T_{ca}. The heat capacity attributed to superfluid within the aerogel can be fit with a rounded BCS form, and accounts for 0.30 of the non-bulk fluid in the aerogel, indicating a substantial reduction in the superfluid order parameter consistent with earlier superfluid density measurements.Comment: 4 pages, 5 figure

    Quantum cavitation in liquid 3^3He: dissipation effects

    Get PDF
    We have investigated the effect that dissipation may have on the cavitation process in normal liquid 3^3He. Our results indicate that a rather small dissipation decreases sizeably the quantum-to-thermal crossover temperature T∗T^* for cavitation in normal liquid 3^3He. This is a possible explanation why recent experiments have not yet found clear evidence of quantum cavitation at temperatures below the T∗T^* predicted by calculations which neglect dissipation.Comment: To be published in Physical Review B6
    • …
    corecore