138 research outputs found

    Phase Transitions in Two-Dimensional Traffic Flow Models

    Get PDF
    We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.Comment: RevTeX 3.0 file. Figures available upon request to e-address [email protected] (or 'dopico' or 'molera' or 'anxo', same node

    Two-dimensional cellular automaton model of traffic flow with open boundaries

    Full text link
    A two-dimensional cellular automaton model of traffic flow with open boundaries are investigated by computer simulations. The outflow of cars from the system and the average velocity are investigated. The time sequences of the outflow and average velocity have flicker noises in a jamming phase. The low density behavior are discussed with simple jam-free approximation.Comment: 14 pages, Phys. Rev. E in press, PostScript figures available at ftp://hirose.ai.is.saga-u.ac.jp/pub/documents/papers/1996/2DTR/ OpenBoundaries/Figs.tar.g

    The SFXC software correlator for Very Long Baseline Interferometry: Algorithms and Implementation

    Get PDF
    In this paper a description is given of the SFXC software correlator, developed and maintained at the Joint Institute for VLBI in Europe (JIVE). The software is designed to run on generic Linux-based computing clusters. The correlation algorithm is explained in detail, as are some of the novel modes that software correlation has enabled, such as wide-field VLBI imaging through the use of multiple phase centres and pulsar gating and binning. This is followed by an overview of the software architecture. Finally, the performance of the correlator as a function of number of CPU cores, telescopes and spectral channels is shown.Comment: Accepted by Experimental Astronom

    Synchrotron X-ray microdiffraction to study dental structures in Cretaceous crocodylomorphs

    Get PDF
    Synchrotron radiation X-ray microdiffraction (SR-μXRD) has been applied for the first time as a fundamental method of analysis to unveil crocodilian teeth growth and development. Teeth from a fossil crocodylomorph from the Upper Cretaceous site of Lo Hueco (Spain) and a modern crocodylian from the living species Crocodylus niloticus have been analysed. Both samples have been studied through Polarized Light Microscopy, Scanning Electron Microscopy coupled with Energy Dispersive X-Ray Spectroscopy, Confocal Raman Spectroscopy, and SR-μXRD. Significant differences have been found in hydroxyapatite (HA) crystallite sizes and texture, and the evolution of these two features along teeth depth. The main differences observed in crystallite size are related to postdepositional processes and/or the environmental and functional pressures of teeth during crocodylomorph life, very different from that of the modern specimen. Regarding the crystalline texture in the tooth enamel, it can be linked to teeth functionality during crocodilian life, causing the directed growth of HA crystallites due to the mechanical stress to which they are subjectedThis work was funded by the projects PGC2018-099405-B-100 (Ministerio de Ciencia, Innovacion y Universidades); HAR2017- 82755-P, HAR2016-78036-P, HAR2016-74846-P, HAR2017-83004-P, CGL2015-66604, CGL2015-68363 and MAT2015-67593-P (Ministerio de Economía y Competitividad, Spain); and 201860E127 (CSIC

    Venus Express radio occultation observed by PRIDE

    Get PDF
    Context. Radio occultation is a technique used to study planetary atmospheres by means of the refraction and absorption of a spacecraft carrier signal through the atmosphere of the celestial body of interest, as detected from a ground station on Earth. This technique is usually employed by the deep space tracking and communication facilities (e.g., NASA's Deep Space Network (DSN), ESA's Estrack). Aims. We want to characterize the capabilities of the Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique for radio occultation experiments, using radio telescopes equipped with Very Long Baseline Interferometry (VLBI) instrumentation. Methods. We conducted a test with ESA's Venus Express (VEX), to evaluate the performance of the PRIDE technique for this particular application. We explain in detail the data processing pipeline of radio occultation experiments with PRIDE, based on the collection of so-called open-loop Doppler data with VLBI stations, and perform an error propagation analysis of the technique. Results. With the VEX test case and the corresponding error analysis, we have demonstrated that the PRIDE setup and processing pipeline is suited for radio occultation experiments of planetary bodies. The noise budget of the open-loop Doppler data collected with PRIDE indicated that the uncertainties in the derived density and temperature profiles remain within the range of uncertainties reported in previous Venus' studies. Open-loop Doppler data can probe deeper layers of thick atmospheres, such as that of Venus, when compared to closed-loop Doppler data. Furthermore, PRIDE through the VLBI networks around the world, provides a wide coverage and range of large antenna dishes, that can be used for this type of experiments

    Theoretical approach to two-dimensional traffic flow models

    Get PDF
    In this paper we present a theoretical analysis of a recently proposed two-dimensional Cellular Automata model for traffic flow in cities with the novel ingredient of turning capability. Numerical simulations of this model show that there is a transition between a freely moving phase with high velocity to a jammed state with low velocity. We study the dynamics of such a model starting with the microscopic evolution equation, which will serve as a basis for further analysis. It is shown that a kinetic approach, based on the Boltzmann assumption, is able to provide a reasonably good description of the jamming transition. We further introduce a space-time continuous phenomenological model leading to a couple of partial differential equations whose preliminary results agree rather well with the numerical simulations.Comment: 15 pages, REVTeX 3.0, 7 uuencoded figures upon request to [email protected]

    Analysis of an Interplanetary Coronal Mass Ejection by a spacecraft radio signal: A case study

    Get PDF
    Tracking radio communication signals from planetary spacecraft with ground-based telescopes offers the possibility to study the electron density and the interplanetary scintillation of the solar wind. Observations of the telemetry link of planetary spacecraft have been conducted regularly with ground antennae from the European Very Long Baseline Interferometry Network, aiming to study the propagation of radio signals in the solar wind at different solar elongations and distances from the Sun. We have analyzed the Mars Express spacecraft radio signal phase fluctuations while, based on a 3-D heliosphere plasma simulation, an interplanetary coronal mass ejection (ICME) crossed the radio path during one of our observations on 6 April 2015. Our measurements showed that the phase scintillation indices increased by a factor of 4 during the passage of the ICME. The method presented here confirms that the phase scintillation technique based on spacecraft signals provides information of the properties and propagation of the ICMEs in the heliosphere

    Anisotropic effect on two-dimensional cellular automaton traffic flow with periodic and open boundaries

    Full text link
    By the use of computer simulations we investigate, in the cellular automaton of two-dimensional traffic flow, the anisotropic effect of the probabilities of the change of the move directions of cars, from up to right (purp_{ur}) and from right to up (prup_{ru}), on the dynamical jamming transition and velocities under the periodic boundary conditions in one hand and the phase diagram under the open boundary conditions in the other hand. However, in the former case, the first order jamming transition disappears when the cars alter their directions of move (pur0p_{ur}\neq 0 and/or pru0p_{ru}\neq 0). In the open boundary conditions, it is found that the first order line transition between jamming and moving phases is curved. Hence, by increasing the anisotropy, the moving phase region expand as well as the contraction of the jamming phase one. Moreover, in the isotropic case, and when each car changes its direction of move every time steps (pru=pur=1p_{ru}=p_{ur}=1), the transition from the jamming phase (or moving phase) to the maximal current one is of first order. Furthermore, the density profile decays, in the maximal current phase, with an exponent γ1/4\gamma \approx {1/4}.}Comment: 13 pages, 22 figure

    Dynamics of Electric Field Domains and Oscillations of the Photocurrent in a Simple Superlattice Model

    Full text link
    A discrete model is introduced to account for the time-periodic oscillations of the photocurrent in a superlattice observed by Kwok et al, in an undoped 40 period AlAs/GaAs superlattice. Basic ingredients are an effective negative differential resistance due to the sequential resonant tunneling of the photoexcited carriers through the potential barriers, and a rate equation for the holes that incorporates photogeneration and recombination. The photoexciting laser acts as a damping factor ending the oscillations when its power is large enough. The model explains: (i) the known oscillatory static I-V characteristic curve through the formation of a domain wall connecting high and low electric field domains, and (ii) the photocurrent and photoluminescence time-dependent oscillations after the domain wall is formed. In our model, they arise from the combined motion of the wall and the shift of the values of the electric field at the domains. Up to a certain value of the photoexcitation, the non-uniform field profile with two domains turns out to be metastable: after the photocurrent oscillations have ceased, the field profile slowly relaxes toward the uniform stationary solution (which is reached on a much longer time scale). Multiple stability of stationary states and hysteresis are also found. An interpretation of the oscillations in the photoluminescence spectrum is also given.Comment: 34 pages, REVTeX 3.0, 10 figures upon request, MA/UC3M/07/9
    corecore