4,470 research outputs found

    Scaling behavior of interactions in a modular quantum system and the existence of local temperature

    Get PDF
    We consider a quantum system of fixed size consisting of a regular chain of nn-level subsystems, where nn is finite. Forming groups of NN subsystems each, we show that the strength of interaction between the groups scales with N1/2N^{- 1/2}. As a consequence, if the total system is in a thermal state with inverse temperature β\beta, a sufficient condition for subgroups of size NN to be approximately in a thermal state with the same temperature is NβδEˉ\sqrt{N} \gg \beta \bar{\delta E}, where δEˉ\bar{\delta E} is the width of the occupied level spectrum of the total system. These scaling properties indicate on what scale local temperatures may be meaningfully defined as intensive variables. This question is particularly relevant for non-equilibrium scenarios such as heat conduction etc.Comment: 7 pages, accepted for publication in Europhysics Letter

    Local effective dynamics of quantum systems: A generalized approach to work and heat

    Full text link
    By computing the local energy expectation values with respect to some local measurement basis we show that for any quantum system there are two fundamentally different contributions: changes in energy that do not alter the local von Neumann entropy and changes that do. We identify the former as work and the latter as heat. Since our derivation makes no assumptions on the system Hamiltonian or its state, the result is valid even for states arbitrarily far from equilibrium. Examples are discussed ranging from the classical limit to purely quantum mechanical scenarios, i.e. where the Hamiltonian and the density operator do not commute.Comment: 5 pages, 1 figure, published versio

    ANSYS Creep-Fatigue Assessment tool for EUROFER97 components

    Get PDF
    The damage caused by creep-fatigue is an important factor for materials at high temperatures. For in- vessel components of fusion reactors the material EUROFER97 is a candidate for structural application where it is subjected to irradiation and cyclic thermo-mechanical loads. To be able to evaluate fusion reactor components reliably, creep-fatigue damage has to be taken into account. In the frame of Engi- neering Data and Design Integration (EDDI) in EUROfusion Technology Work Programme rapid and easy design evaluation is very important to predict the critical regions under typical fusion reactor loading conditions. The presented Creep-Fatigue Assessment (CFA) tool is based on the creep-fatigue rules in ASME Boiler Pressure Vessel Code (BPVC) Section 3 Division 1 Subsection NH which was adapted to the material EUROFER97 and developed for ANSYS. The CFA tool uses the local stress, maximum elastic strain range and temperature from the elastic analysis of the component performed with ANSYS. For the as- sessment design fatigue and stress to rupture curves of EUROFER97 as well as isochronous stress vs. strain curves determined by a constitutive model considering irradiation influence are used to deal with creep-fatigue damage. As a result allowable number of cycles based on creep-fatigue damage interaction under given hold times and irradiation rates is obtained. This tool can be coupled with ANSYS MAPDL and ANSYS Workbench utilizing MAPDL script files

    Small quantum networks operating as quantum thermodynamic machines

    Full text link
    We show that a 3-qubit system as studied for quantum information purposes can alternatively be used as a thermodynamic machine when driven in finite time and interfaced between two split baths. The spins are arranged in a chain where the working spin in the middle exercises Carnot cycles the area of which defines the exchanged work. The cycle orientation (sign of the exchanged work) flips as the difference of bath temperatures goes through a critical value.Comment: RevTeX, 4 pages, 7 figures. Replaced by version accepted for publication in EP

    Elliptical orbits in the Bloch sphere

    Full text link
    As is well known, when an SU(2) operation acts on a two-level system, its Bloch vector rotates without change of magnitude. Considering a system composed of two two-level systems, it is proven that for a class of nonlocal interactions of the two subsystems including \sigma_i\otimes\sigma_j (with i,j \in {x,y,z}) and the Heisenberg interaction, the geometric description of the motion is particularly simple: each of the two Bloch vectors follows an elliptical orbit within the Bloch sphere. The utility of this result is demonstrated in two applications, the first of which bears on quantum control via quantum interfaces. By employing nonunitary control operations, we extend the idea of controllability to a set of points which are not necessarily connected by unitary transformations. The second application shows how the orbit of the coherence vector can be used to assess the entangling power of Heisenberg exchange interaction.Comment: 9 pages, 4 figures, few corrections, J. Opt. B: Quantum Semiclass. Opt. 7 (2005) S1-S

    Local Versus Global Thermal States: Correlations and the Existence of Local Temperatures

    Get PDF
    We consider a quantum system consisting of a regular chain of elementary subsystems with nearest neighbor interactions and assume that the total system is in a canonical state with temperature TT. We analyze under what condition the state factors into a product of canonical density matrices with respect to groups of nn subsystems each, and when these groups have the same temperature TT. While in classical mechanics the validity of this procedure only depends on the size of the groups nn, in quantum mechanics the minimum group size nminn_{min} also depends on the temperature TT ! As examples, we apply our analysis to a harmonic chain and different types of Ising spin chains. We discuss various features that show up due to the characteristics of the models considered. For the harmonic chain, which successfully describes thermal properties of insulating solids, our approach gives a first quantitative estimate of the minimal length scale on which temperature can exist: This length scale is found to be constant for temperatures above the Debye temperature and proportional to T3T^{-3} below.Comment: 12 pages, 5 figures, discussion of results extended, accepted for publication in Phys. Rev.

    Direct carrier detection by in situ suppression hybridization with cosmid clones of the Duchenne/Becker muscular dystrophy locus

    Get PDF
    A basic problem in genetic counseling of families with Duchenne/Becker muscular dystrophy (DMD/BMD) concerns the carrier status of female relatives of an affected male. In about 60% of these patients, deletions of one or more exons of the dystrophin gene can be identified. These deletions preferentially include exon 45, which can be detected by multiplex polymerase chain reaction (PCR) and Southern blot analysis of genomic cosmid clones that map to this critical region. As a new approach for definitive carrier detection, we have performed chromosomal in situ suppression (CISS) hybridization with these cosmid clones in female relatives of four unrelated patients. In normal females, most metaphases showed signals on both×chromosomes, whereas only one×chromosome was labeled in carriers. Our results demonstrate that CISS hybridization can define the carrier status in female relatives of DMD patients exhibiting a deletion in the dystrophin gene

    Measurement models for time-resolved spectroscopy: a comment

    Full text link
    We present an exactly solvable model for photon emission, which allows us to examine the evolution of the photon wavefunction in space and time. We apply this model to coherent phenomena in three-level systems with a special emphasis on the photon detection process.Comment: 14 pages RevTex, 4 figure

    The Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Reference Atlas (MEGaSaURA) I: The Sample and the Spectra

    Full text link
    We introduce Project MEGaSaURA: The Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Reference Atlas. MEGaSaURA comprises medium-resolution, rest-frame ultraviolet spectroscopy of N=15 bright gravitationally lensed galaxies at redshifts of 1.68<<z<<3.6, obtained with the MagE spectrograph on the Magellan telescopes. The spectra cover the observed-frame wavelength range 3200<λo<82803200 < \lambda_o < 8280 \AA ; the average spectral resolving power is R=3300. The median spectrum has a signal-to-noise ratio of SNR=21SNR=21 per resolution element at 5000 \AA . As such, the MEGaSaURA spectra have superior signal-to-noise-ratio and wavelength coverage compared to what COS/HST provides for starburst galaxies in the local universe. This paper describes the sample, the observations, and the data reduction. We compare the measured redshifts for the stars, the ionized gas as traced by nebular lines, and the neutral gas as traced by absorption lines; we find the expected bulk outflow of the neutral gas, and no systemic offset between the redshifts measured from nebular lines and the redshifts measured from the stellar continuum. We provide the MEGaSaURA spectra to the astronomical community through a data release.Comment: Resubmitted to AAS Journals. Data release will accompany journal publication. v2 addresses minor comments from refere

    Pattern formation in quantum Turing machines

    Get PDF
    We investigate the iteration of a sequence of local and pair unitary transformations, which can be interpreted to result from a Turing-head (pseudo-spin SS) rotating along a closed Turing-tape (MM additional pseudo-spins). The dynamical evolution of the Bloch-vector of SS, which can be decomposed into 2M2^{M} primitive pure state Turing-head trajectories, gives rise to fascinating geometrical patterns reflecting the entanglement between head and tape. These machines thus provide intuitive examples for quantum parallelism and, at the same time, means for local testing of quantum network dynamics.Comment: Accepted for publication in Phys.Rev.A, 3 figures, REVTEX fil
    corecore