35 research outputs found

    Interaction of a ring-reinforced shell and a fluid medium

    Get PDF
    Transient dynamic response of periodically ring- reinforced, infinitely long, circular cylindrical shell to uniform pressure applied through surrounding acoustic mediu

    Review of probabilistic analysis of dynamic response of systems with random parameters

    Get PDF
    The various methods that have been studied in the past to allow probabilistic analysis of dynamic response for systems with random parameters are reviewed. Dynamic response may have been obtained deterministically if the variations about the nominal values were small; however, for space structures which require precise pointing, the variations about the nominal values of the structural details and of the environmental conditions are too large to be considered as negligible. These uncertainties are accounted for in terms of probability distributions about their nominal values. The quantities of concern for describing the response of the structure includes displacements, velocities, and the distributions of natural frequencies. The exact statistical characterization of the response would yield joint probability distributions for the response variables. Since the random quantities will appear as coefficients, determining the exact distributions will be difficult at best. Thus, certain approximations will have to be made. A number of techniques that are available are discussed, even in the nonlinear case. The methods that are described were: (1) Liouville's equation; (2) perturbation methods; (3) mean square approximate systems; and (4) nonlinear systems with approximation by linear systems

    Extended quasimodes within nominally localized random waveguides

    Full text link
    We have measured the spatial and spectral dependence of the microwave field inside an open absorbing waveguide filled with randomly juxtaposed dielectric slabs in the spectral region in which the average level spacing exceeds the typical level width. Whenever lines overlap in the spectrum, the field exhibits multiple peaks within the sample. Only then is substantial energy found beyond the first half of the sample. When the spectrum throughout the sample is decomposed into a sum of Lorentzian lines plus a broad background, their central frequencies and widths are found to be essentially independent of position. Thus, this decomposition provides the electromagnetic quasimodes underlying the extended field in nominally localized samples. When the quasimodes overlap spectrally, they exhibit multiple peaks in space.Comment: 4 pages, submitted to PRL (23 December 2005

    Intense plasma discharge source at 13.5 nm for extreme-ultraviolet lithography

    Get PDF
    Includes bibliographical references (page 36).We measured an emission of 6 mJ/pulse at 13.5 nm produced by the Li2+ Lyman-α transition excited by a fast capillary discharge, using a lithium hydride capillary. 75% of the energy emanated from a spot size of 0.6 mm. The emission is narrow band and would thus be useful in extreme-ultraviolet lithography imaging systems that use Mo:Si multilayer mirrors. The output within the bandwidth of Mo:Si mirrors was comparable with that of a laser-produced plasma (LPP), and the wall plug efficiency of 0.1% was nearly an order of magnitude better than that of a LPP

    Signatures of photon localization

    Full text link
    Signatures of photon localization are observed in a constellation of transport phenomena which reflect the transition from diffusive to localized waves. The dimensionless conductance, g, and the ratio of the typical spectral width and spacing of quasimodes, \delta, are key indicators of electronic and classical wave localization when inelastic processes are absent. However, these can no longer serve as localization parameters in absorbing samples since the affect of absorption depends upon the length of the trajectories of partial waves traversing the sample, which are superposed to create the scattered field. A robust determination of localization in the presence of absorption is found, however, in steady-state measurements of the statistics of radiation transmitted through random samples. This is captured in a single parameter, the variance of the total transmission normalized to its ensemble average value, which is equal to the degree of intensity correlation of the transmitted wave, \kappa. The intertwined effects of localization and absorption can also be disentangled in the time domain since all waves emerging from the sample at a fixed time delay from an exciting pulse, t, are suppressed equally by absorption. As a result, the relative weights of partial waves emerging from the sample, and hence the statistics of intensity fluctuations and correlation, and the suppression of propagation by weak localization are not changed by absorption, and manifest the growing impact of weak localization with t.Comment: RevTex 16 pages, 12 figures; to appear in special issue of J. Phys. A on quantum chaotic scatterin

    UTA versus line emission for EUVL: Studies on xenon emission at the NIST EBIT

    Full text link
    Spectra from xenon ions have been recorded at the NIST EBIT and the emission into a 2% bandwidth at 13.5 nm arising from 4d-5p transitions compared with that from 4d-4f and 4p-4d transitions in Xe XI and also with that obtained from the unresolved transition array (UTA) observed to peak just below 11 nm. It was found that an improvement of a factor of five could be gained in photon yield using the UTA rather than the 4d-5p emission. The results are compared with atomic structure calculations and imply that a significant gain in efficiency should be obtained using tin, in which the emission at 13.5 nm comes from a similar UTA, rather than xenon as an EUVL source material

    Transient Response of a Periodically Supported Cylindrical Shell Immersed in a Fluid Medium 1 Transactions of the ASME

    No full text
    The dynamic response of a periodically simply supported, infinitely long, circular cylindrical shell to a pressure suddenly applied through the surrounding acoustic medium is investigated. The radiates a plane wave, an approximation which increases in error as time progresses. A solution of the same problem was given by Haywood The forced vibrations of an infinitely long shell with periodically spaced rigid septa and reinforcing rings, surrounded by an infinite acoustic fluid, were studied by Junger In the present investigation, emphasis is placed on the structural aspects of the dynamic response of a periodically simply supported, infinitely long, circular cylindrical shell to a pressure suddenly applied through the surrounding acoustic medium. The incident particle velocity is zero, and the pressure is assumed to have a harmonic spatial variation parallel to the shell axis. Such a pressure distribution is assumed to simplify treatment o

    Axisymmetric Elasticity Solutions of Spherical Shell Segments

    No full text
    corecore