6,598 research outputs found

    Observing the Spontaneous Breakdown of Unitarity

    Full text link
    During the past decade, the experimental development of being able to create ever larger and heavier quantum superpositions has brought the discussion of the connection between microscopic quantum mechanics and macroscopic classical physics back to the forefront of physical research. Under equilibrium conditions this connection is in fact well understood in terms of the mechanism of spontaneous symmetry breaking, while the emergence of classical dynamics can be described within an ensemble averaged description in terms of decoherence. The remaining realm of individual-state quantum dynamics in the thermodynamic limit was addressed in a recent paper proposing that the unitarity of quantum mechanical time evolution in macroscopic objects may be susceptible to a spontaneous breakdown. Here we will discuss the implications of this theory of spontaneous unitarity breaking for the modern experiments involving truly macroscopic Schrodinger cat states.Comment: 4 pages, no figure

    Competition of local-moment ferromagnetism and superconductivity in Co-substituted EuFe2As2

    Full text link
    In contrast to SrFe2As2, where only the iron possesses a magnetic moment, in EuFe2As2 an additional large, local magnetic moment is carried by Eu2+. Like SrFe2As2, EuFe2As2 exhibits a spin-density wave transition at high temperatures, but in addition the magnetic moments of the Eu2+ order at around 20 K. The interplay of pressure-induced superconductivity and the Eu2+ order leads to a behavior which is reminiscent of re-entrant superconductivity as it was observed, for example, in the ternary Chevrel phases or in the rare-earth nickel borocarbides. Here, we study the delicate interplay of the ordering of the Eu2+ moments and superconductivity in EuFe1.9Co0.1As2, where application of external pressure makes it possible to sensitively tune the ratio of the magnetic (T_C) and the superconducting (T_{c,onset}) critical temperatures. We find that superconductivity disappears once T_C > T_{c,onset}.Comment: 4 pages, 4 figures, submitted to the proceedings of SCES201

    Evolutionary accessibility of mutational pathways

    Get PDF
    Functional effects of different mutations are known to combine to the total effect in highly nontrivial ways. For the trait under evolutionary selection (`fitness'), measured values over all possible combinations of a set of mutations yield a fitness landscape that determines which mutational states can be reached from a given initial genotype. Understanding the accessibility properties of fitness landscapes is conceptually important in answering questions about the predictability and repeatability of evolutionary adaptation. Here we theoretically investigate accessibility of the globally optimal state on a wide variety of model landscapes, including landscapes with tunable ruggedness as well as neutral `holey' landscapes. We define a mutational pathway to be accessible if it contains the minimal number of mutations required to reach the target genotype, and if fitness increases in each mutational step. Under this definition accessibility is high, in the sense that at least one accessible pathwayexists with a substantial probability that approaches unity as the dimensionality of the fitness landscape (set by the number of mutational loci) becomes large. At the same time the number of alternative accessible pathways grows without bound. We test the model predictions against an empirical 8-locus fitness landscape obtained for the filamentous fungus \textit{Aspergillus niger}. By analyzing subgraphs of the full landscape containing different subsets of mutations, we are able to probe the mutational distance scale in the empirical data. The predicted effect of high accessibility is supported by the empirical data and very robust, which we argue to reflect the generic topology of sequence spaces.Comment: 16 pages, 4 figures; supplementary material available on reques

    Accumulation of rare coding variants in genes implicated in risk of human cleft lip with or without cleft palate.

    Get PDF
    Cleft lip with/without cleft palate (CLP) is a common craniofacial malformation with complex etiologies, reflecting both genetic and environmental factors. Most of the suspected genetic risk for CLP has yet to be identified. To further classify risk loci and estimate the contribution of rare variants, we sequenced the exons in 49 candidate genes in 323 CLP cases and 211 nonmalformed controls. Our findings indicated that rare, protein-altering variants displayed markedly higher burdens in CLP cases at relevant loci. First, putative loss-of-function mutations (nonsense, frameshift) were significantly enriched among cases: 13 of 323 cases (~4%) harbored such alleles within these 49 genes, versus one such change in controls (p = 0.01). Second, in gene-level analyses, the burden of rare alleles showed greater case-association for several genes previously implicated in cleft risk. For example, BHMT displayed a 10-fold increase in protein-altering variants in CLP cases (p = .03), including multiple case occurrences of a rare frameshift mutation (K400 fs). Other loci with greater rare, coding allele burdens in cases were in signaling pathways relevant to craniofacial development (WNT9B, BMP4, BMPR1B) as well as the methionine cycle (MTRR). We conclude that rare coding variants may confer risk for isolated CLP

    Enhancement of the upper critical field in codoped iron-arsenic high-temperature superconductors

    Full text link
    We present the first study of codoped iron-arsenide superconductors of the 122 family (Sr/Ba)_(1-x)K_xFe_(2-y)Co_yAs_2 with the purpose to increase the upper critical field H_c2 compared to single doped (Sr/Ba)Fe_2As_2 materials. H_c2 was investigated by measuring the magnetoresistance in high pulsed magnetic fields up to 64 T. We find, that H_c2 extrapolated to T = 0 is indeed enhanced significantly to ~ 90 T for polycrystalline samples of Ba_0.55K_0.45Fe_1.95Co_0.05As_2 compared to ~75 T for Ba_0.55K_0.45Fe_2As_2 and BaFe_1.8Co_0.2As_2 single crystals. Codoping thus is a promising way for the systematic optimization of iron-arsenic based superconductors for magnetic-field and high-current applications.Comment: 7 pages, 5 figures, submitted to Journal of Applied Physic

    Quantitative analyses of empirical fitness landscapes

    Full text link
    The concept of a fitness landscape is a powerful metaphor that offers insight into various aspects of evolutionary processes and guidance for the study of evolution. Until recently, empirical evidence on the ruggedness of these landscapes was lacking, but since it became feasible to construct all possible genotypes containing combinations of a limited set of mutations, the number of studies has grown to a point where a classification of landscapes becomes possible. The aim of this review is to identify measures of epistasis that allow a meaningful comparison of fitness landscapes and then apply them to the empirical landscapes to discern factors that affect ruggedness. The various measures of epistasis that have been proposed in the literature appear to be equivalent. Our comparison shows that the ruggedness of the empirical landscape is affected by whether the included mutations are beneficial or deleterious and by whether intra- or intergenic epistasis is involved. Finally, the empirical landscapes are compared to landscapes generated with the Rough Mt.\ Fuji model. Despite the simplicity of this model, it captures the features of the experimental landscapes remarkably well.Comment: 24 pages, 5 figures; to appear in Journal of Statistical Mechanics: Theory and Experimen

    Method for coregistration of optical measurements of breast tissue with histopathology : the importance of accounting for tissue deformations

    Get PDF
    For the validation of optical diagnostic technologies, experimental results need to be benchmarked against the gold standard. Currently, the gold standard for tissue characterization is assessment of hematoxylin and eosin (H&E)-stained sections by a pathologist. When processing tissue into H&E sections, the shape of the tissue deforms with respect to the initial shape when it was optically measured. We demonstrate the importance of accounting for these tissue deformations when correlating optical measurement with routinely acquired histopathology. We propose a method to register the tissue in the H&E sections to the optical measurements, which corrects for these tissue deformations. We compare the registered H&E sections to H&E sections that were registered with an algorithm that does not account for tissue deformations by evaluating both the shape and the composition of the tissue and using microcomputer tomography data as an independent measure. The proposed method, which did account for tissue deformations, was more accurate than the method that did not account for tissue deformations. These results emphasize the need for a registration method that accounts for tissue deformations, such as the method presented in this study, which can aid in validating optical techniques for clinical use. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License

    Roughness correction to the Casimir force at short separations: Contact distance and extreme value statistics

    Get PDF
    So far there has been no reliable method to calculate the Casimir force at separations comparable to the root-mean-square of the height fluctuations of the surfaces. Statistical analysis of rough gold samples has revealed the presence of peaks considerably higher than the root-mean-square roughness. These peaks redefine the minimum separation distance between the bodies and can be described by extreme value statistics. Here we show that the contribution of the high peaks to the Casimir force can be calculated with a pairwise additive summation, while the contribution of asperities with normal height can be evaluated perturbatively. This method provides a reliable estimate of the Casimir force at short distances, and it solves the significant, so far unexplained discrepancy between measurements of the Casimir force between rough surfaces and the results of perturbation theory. Furthermore, we illustrate the importance of our results in a technologically relevant situation.Comment: 29 pages, 11 figures, to appear in Phys. Rev.
    • …
    corecore