6,598 research outputs found
Observing the Spontaneous Breakdown of Unitarity
During the past decade, the experimental development of being able to create
ever larger and heavier quantum superpositions has brought the discussion of
the connection between microscopic quantum mechanics and macroscopic classical
physics back to the forefront of physical research. Under equilibrium
conditions this connection is in fact well understood in terms of the mechanism
of spontaneous symmetry breaking, while the emergence of classical dynamics can
be described within an ensemble averaged description in terms of decoherence.
The remaining realm of individual-state quantum dynamics in the thermodynamic
limit was addressed in a recent paper proposing that the unitarity of quantum
mechanical time evolution in macroscopic objects may be susceptible to a
spontaneous breakdown. Here we will discuss the implications of this theory of
spontaneous unitarity breaking for the modern experiments involving truly
macroscopic Schrodinger cat states.Comment: 4 pages, no figure
Competition of local-moment ferromagnetism and superconductivity in Co-substituted EuFe2As2
In contrast to SrFe2As2, where only the iron possesses a magnetic moment, in
EuFe2As2 an additional large, local magnetic moment is carried by Eu2+. Like
SrFe2As2, EuFe2As2 exhibits a spin-density wave transition at high
temperatures, but in addition the magnetic moments of the Eu2+ order at around
20 K. The interplay of pressure-induced superconductivity and the Eu2+ order
leads to a behavior which is reminiscent of re-entrant superconductivity as it
was observed, for example, in the ternary Chevrel phases or in the rare-earth
nickel borocarbides. Here, we study the delicate interplay of the ordering of
the Eu2+ moments and superconductivity in EuFe1.9Co0.1As2, where application of
external pressure makes it possible to sensitively tune the ratio of the
magnetic (T_C) and the superconducting (T_{c,onset}) critical temperatures. We
find that superconductivity disappears once T_C > T_{c,onset}.Comment: 4 pages, 4 figures, submitted to the proceedings of SCES201
Evolutionary accessibility of mutational pathways
Functional effects of different mutations are known to combine to the total
effect in highly nontrivial ways. For the trait under evolutionary selection
(`fitness'), measured values over all possible combinations of a set of
mutations yield a fitness landscape that determines which mutational states can
be reached from a given initial genotype. Understanding the accessibility
properties of fitness landscapes is conceptually important in answering
questions about the predictability and repeatability of evolutionary
adaptation. Here we theoretically investigate accessibility of the globally
optimal state on a wide variety of model landscapes, including landscapes with
tunable ruggedness as well as neutral `holey' landscapes. We define a
mutational pathway to be accessible if it contains the minimal number of
mutations required to reach the target genotype, and if fitness increases in
each mutational step. Under this definition accessibility is high, in the sense
that at least one accessible pathwayexists with a substantial probability that
approaches unity as the dimensionality of the fitness landscape (set by the
number of mutational loci) becomes large. At the same time the number of
alternative accessible pathways grows without bound. We test the model
predictions against an empirical 8-locus fitness landscape obtained for the
filamentous fungus \textit{Aspergillus niger}. By analyzing subgraphs of the
full landscape containing different subsets of mutations, we are able to probe
the mutational distance scale in the empirical data. The predicted effect of
high accessibility is supported by the empirical data and very robust, which we
argue to reflect the generic topology of sequence spaces.Comment: 16 pages, 4 figures; supplementary material available on reques
Accumulation of rare coding variants in genes implicated in risk of human cleft lip with or without cleft palate.
Cleft lip with/without cleft palate (CLP) is a common craniofacial malformation with complex etiologies, reflecting both genetic and environmental factors. Most of the suspected genetic risk for CLP has yet to be identified. To further classify risk loci and estimate the contribution of rare variants, we sequenced the exons in 49 candidate genes in 323 CLP cases and 211 nonmalformed controls. Our findings indicated that rare, protein-altering variants displayed markedly higher burdens in CLP cases at relevant loci. First, putative loss-of-function mutations (nonsense, frameshift) were significantly enriched among cases: 13 of 323 cases (~4%) harbored such alleles within these 49 genes, versus one such change in controls (p = 0.01). Second, in gene-level analyses, the burden of rare alleles showed greater case-association for several genes previously implicated in cleft risk. For example, BHMT displayed a 10-fold increase in protein-altering variants in CLP cases (p = .03), including multiple case occurrences of a rare frameshift mutation (K400 fs). Other loci with greater rare, coding allele burdens in cases were in signaling pathways relevant to craniofacial development (WNT9B, BMP4, BMPR1B) as well as the methionine cycle (MTRR). We conclude that rare coding variants may confer risk for isolated CLP
Enhancement of the upper critical field in codoped iron-arsenic high-temperature superconductors
We present the first study of codoped iron-arsenide superconductors of the
122 family (Sr/Ba)_(1-x)K_xFe_(2-y)Co_yAs_2 with the purpose to increase the
upper critical field H_c2 compared to single doped (Sr/Ba)Fe_2As_2 materials.
H_c2 was investigated by measuring the magnetoresistance in high pulsed
magnetic fields up to 64 T. We find, that H_c2 extrapolated to T = 0 is indeed
enhanced significantly to ~ 90 T for polycrystalline samples of
Ba_0.55K_0.45Fe_1.95Co_0.05As_2 compared to ~75 T for Ba_0.55K_0.45Fe_2As_2 and
BaFe_1.8Co_0.2As_2 single crystals. Codoping thus is a promising way for the
systematic optimization of iron-arsenic based superconductors for
magnetic-field and high-current applications.Comment: 7 pages, 5 figures, submitted to Journal of Applied Physic
Quantitative analyses of empirical fitness landscapes
The concept of a fitness landscape is a powerful metaphor that offers insight
into various aspects of evolutionary processes and guidance for the study of
evolution. Until recently, empirical evidence on the ruggedness of these
landscapes was lacking, but since it became feasible to construct all possible
genotypes containing combinations of a limited set of mutations, the number of
studies has grown to a point where a classification of landscapes becomes
possible. The aim of this review is to identify measures of epistasis that
allow a meaningful comparison of fitness landscapes and then apply them to the
empirical landscapes to discern factors that affect ruggedness. The various
measures of epistasis that have been proposed in the literature appear to be
equivalent. Our comparison shows that the ruggedness of the empirical landscape
is affected by whether the included mutations are beneficial or deleterious and
by whether intra- or intergenic epistasis is involved. Finally, the empirical
landscapes are compared to landscapes generated with the Rough Mt.\ Fuji model.
Despite the simplicity of this model, it captures the features of the
experimental landscapes remarkably well.Comment: 24 pages, 5 figures; to appear in Journal of Statistical Mechanics:
Theory and Experimen
Method for coregistration of optical measurements of breast tissue with histopathology : the importance of accounting for tissue deformations
For the validation of optical diagnostic technologies, experimental results need to be benchmarked against the gold standard. Currently, the gold standard for tissue characterization is assessment of hematoxylin and eosin (H&E)-stained sections by a pathologist. When processing tissue into H&E sections, the shape of the tissue deforms with respect to the initial shape when it was optically measured. We demonstrate the importance of accounting for these tissue deformations when correlating optical measurement with routinely acquired histopathology. We propose a method to register the tissue in the H&E sections to the optical measurements, which corrects for these tissue deformations. We compare the registered H&E sections to H&E sections that were registered with an algorithm that does not account for tissue deformations by evaluating both the shape and the composition of the tissue and using microcomputer tomography data as an independent measure. The proposed method, which did account for tissue deformations, was more accurate than the method that did not account for tissue deformations. These results emphasize the need for a registration method that accounts for tissue deformations, such as the method presented in this study, which can aid in validating optical techniques for clinical use. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License
Recommended from our members
Theoretical Study of the Ti-Cl Bond Cleavage Reaction in TiCl4
In this work the kinetics of the TiCl4 TiCl3 + Cl reaction is studied theoretically. A variable-reaction coordinate transition-state theory (VRC-TST) is used to calculate the high-pressure limit rate coefficients. The interaction energy surface for the VRC-TST step is sampled directly at the CASPT2(6e,4o)/cc-pVDZ level of theory including an approximate treatment of the spin-orbit coupling. The pressure-dependence of the reaction in an argon bath gas is explored using the master equation in conjunction with the optimised VRC-TST transition-state number of states. The collisional energy transfer parameters for the TiCl 4-Ar system are estimated via a "one-dimensional minimisation" method and classical trajectories. The Ti-Cl bond dissociation energy is computed using a complete basis set extrapolation technique with cc-pVQZ and cc-pV5Z basis sets. Good quantitative agreement between the estimated rate constants and available literature data is observed. However, the fall-off behaviour of the model results is not seen in the current experimental data. Sensitivity analysis shows that the fall-off effect is insensitive to the choice of model parameters and methods. More experimental work and development of higher-level theoretical methods are needed to further investigate this discrepancy
Roughness correction to the Casimir force at short separations: Contact distance and extreme value statistics
So far there has been no reliable method to calculate the Casimir force at
separations comparable to the root-mean-square of the height fluctuations of
the surfaces. Statistical analysis of rough gold samples has revealed the
presence of peaks considerably higher than the root-mean-square roughness.
These peaks redefine the minimum separation distance between the bodies and can
be described by extreme value statistics. Here we show that the contribution of
the high peaks to the Casimir force can be calculated with a pairwise additive
summation, while the contribution of asperities with normal height can be
evaluated perturbatively. This method provides a reliable estimate of the
Casimir force at short distances, and it solves the significant, so far
unexplained discrepancy between measurements of the Casimir force between rough
surfaces and the results of perturbation theory. Furthermore, we illustrate the
importance of our results in a technologically relevant situation.Comment: 29 pages, 11 figures, to appear in Phys. Rev.
- …