872 research outputs found

    Development of a 3D printer using scanning projection stereolithography

    Get PDF
    We have developed a system for the rapid fabrication of low cost 3D devices and systems in the laboratory with micro-scale features yet cm-scale objects. Our system is inspired by maskless lithography, where a digital micromirror device (DMD) is used to project patterns with resolution up to 10 µm onto a layer of photoresist. Large area objects can be fabricated by stitching projected images over a 5cm2 area. The addition of a z-stage allows multiple layers to be stacked to create 3D objects, removing the need for any developing or etching steps but at the same time leading to true 3D devices which are robust, configurable and scalable. We demonstrate the applications of the system by printing a range of micro-scale objects as well as a fully functioning microfluidic droplet device and test its integrity by pumping dye through the channels

    High accuracy measure of atomic polarizability in an optical lattice clock

    Full text link
    Despite being a canonical example of quantum mechanical perturbation theory, as well as one of the earliest observed spectroscopic shifts, the Stark effect contributes the largest source of uncertainty in a modern optical atomic clock through blackbody radiation. By employing an ultracold, trapped atomic ensemble and high stability optical clock, we characterize the quadratic Stark effect with unprecedented precision. We report the ytterbium optical clock's sensitivity to electric fields (such as blackbody radiation) as the differential static polarizability of the ground and excited clock levels: 36.2612(7) kHz (kV/cm)^{-2}. The clock's fractional uncertainty due to room temperature blackbody radiation is reduced an order of magnitude to 3 \times 10^{-17}.Comment: 5 pages, 3 figures, 2 table

    Discovery of Seven Companions To Intermediate-Mass Stars With Extreme Mass Ratios in the Scorpius-Centaurus Association

    Get PDF
    We report the detection of seven low-mass companions to intermediate-mass stars (SpT B/A/F; M similar to 1.5-4.5M(circle dot)) in the Scorpius-Centaurus (Sco-Cen) Association using nonredundant aperture masking interferometry. Our newly detected objects have contrasts Delta L' approximate to 4-6, corresponding to masses as low as similar to 20 M-Jup and mass ratios of q approximate to 0.01-0.08, depending on the assumed age of the target stars. With projected separations rho approximate to 10-30 AU, our aperture masking detections sample an orbital region previously unprobed by conventional adaptive optics imaging of intermediate-mass Sco-Cen stars covering much larger orbital radii (similar to 30-3000 AU). At such orbital separations, these objects resemble higher-mass versions of the directly imaged planetary mass companions to the 10-30 Myr, intermediate-mass stars HR 8799, beta Pictoris, and HD 95086. These newly discovered companions span the brown dwarf desert, and their masses and orbital radii provide a new constraint on models of the Formation of low-mass stellar and substellar companions to intermediate-mass stars.NASA through the Sagan Fellowship ProgramNSF Astronomy and Astrophysics Postdoctoral Fellowship AST-1203023Clay FellowshipNASA through Hubble Fellowship 51257.01AURA, Inc., for NASA NAS 5-26555W. M. Keck FoundationAstronom

    Erupting Dwarf Novae in the Large Magellanic Cloud

    Full text link
    We report the first likely detections of erupting Dwarf Novae (DN) in an external galaxy: the Large Magellanic Cloud. Six candidates were isolated from approximately a million stars observed every second night over 11 nights with the CTIO 8K x 8K Mosaic2 CCD imager. Artificial dwarf nova and completeness tests suggest that we are seeing only the brightest of the LMC DN, probably SS Cygni-like CVs, but possibly SU UMa-type cataclysmics undergoing superoutbursts. We derive crude but useful limits on the LMC DN surface density, and on the number of DN in the LMC. Many thousands of cataclysmic variables in the Magellanic Clouds can be discovered and characterized with 8 meter class telescopes.Comment: Accepted for publication in AJ, 28 pages, 9 figures total, Figures 1 and 8 are supplied separately in jpeg forma

    An atomic clock with 10−1810^{-18} instability

    Full text link
    Atomic clocks have been transformational in science and technology, leading to innovations such as global positioning, advanced communications, and tests of fundamental constant variation. Next-generation optical atomic clocks can extend the capability of these timekeepers, where researchers have long aspired toward measurement precision at 1 part in 1018\bm{10^{18}}. This milestone will enable a second revolution of new timing applications such as relativistic geodesy, enhanced Earth- and space-based navigation and telescopy, and new tests on physics beyond the Standard Model. Here, we describe the development and operation of two optical lattice clocks, both utilizing spin-polarized, ultracold atomic ytterbium. A measurement comparing these systems demonstrates an unprecedented atomic clock instability of 1.6×10−18\bm{1.6\times 10^{-18}} after only 7\bm{7} hours of averaging

    Erupting Cataclysmic Variable Stars in the Nearest Globular Cluster, NGC 6397: Intermediate Polars?

    Full text link
    NGC 6397 is the closest globular cluster, and hence the ideal place to search for faint stellar populations such as cataclysmic variables (CVs). HST and Chandra observers have identified nine certain and likely CVs in this nearby cluster, including several magnetic CV candidates. We have combined our recent UV imagery with archival HST images of NGC 6397 to search for new CV candidates and especially to look for dwarf nova-like eruptive events. We find remarkable and somewhat unexpected dwarf nova-like eruptions of the two well-known cataclysmic systems CV2 and CV3. These two objects have been claimed to be {\it magnetic} CVs, as indicated by their helium emission-line spectra. Magnetic fields in CVs are usually expected to prevent the disk instability that leads to dwarf nova eruptions. In fact, most field magnetic CVs are observed to not undergo eruptions. Our observations of the dwarf nova eruptions of CV2 and CV3 can be reconciled with these objects' HeII emission lines if both objects are infrequently-erupting intermediate polars, similar to EX Hya. If this is the case for most globular cluster CVs then we can reconcile the many X-ray and UV bright CV candidates seen by Chandra and HST with the very small numbers of erupting dwarf novae observed in cluster cores.Comment: 12 pages, 3 figures. Accepted for publication in The Astronomical Journal. Two additional authors adde

    Flammability of Epoxy Resins Containing Phosphorus

    Get PDF
    As part of a program to develop fire-resistant exterior composite structures for future subsonic commercial and general aviation aircraft, flame-retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured neat epoxy formulations were characterized by thermogravimetric analysis, propane torch test, elemental analysis, microscale combustion calorimetry, and fire calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness and compressive strength of several cured formulations showed no detrimental effect due to phosphorus content. The chemistry and properties of these new epoxy formulations are discussed

    Data-driven efficient score tests for deconvolution problems

    Full text link
    We consider testing statistical hypotheses about densities of signals in deconvolution models. A new approach to this problem is proposed. We constructed score tests for the deconvolution with the known noise density and efficient score tests for the case of unknown density. The tests are incorporated with model selection rules to choose reasonable model dimensions automatically by the data. Consistency of the tests is proved

    Companions of Stars: From Other Stars to Brown Dwarfs to Planets: The Discovery of the First Methane Brown Dwarf

    Full text link
    The discovery of the first methane brown dwarf provides a framework for describing the important advances in both fundamental physics and astrophysics that are due to the study of companions of stars. I present a few highlights of the history of this subject along with details of the discovery of the brown dwarf Gliese 229B. The nature of companions of stars is discussed with an attempt to avoid biases induced by anthropocentric nomenclature. With the newer types of remote reconnaissance of nearby stars and their systems of companions, an exciting and perhaps even more profound set of contributions to science is within reach in the near future. This includes an exploration of the diversity of planets in the universe and perhaps soon the first solid evidence for biological activity outside our Solar System.Comment: 31 pages, 13 figure

    Hyperpolarizability and operational magic wavelength in an optical lattice clock

    Get PDF
    Optical clocks benefit from tight atomic confinement enabling extended interrogation times as well as Doppler- and recoil-free operation. However, these benefits come at the cost of frequency shifts that, if not properly controlled, may degrade clock accuracy. Numerous theoretical studies have predicted optical lattice clock frequency shifts that scale nonlinearly with trap depth. To experimentally observe and constrain these shifts in an 171^{171}Yb optical lattice clock, we construct a lattice enhancement cavity that exaggerates the light shifts. We observe an atomic temperature that is proportional to the optical trap depth, fundamentally altering the scaling of trap-induced light shifts and simplifying their parametrization. We identify an "operational" magic wavelength where frequency shifts are insensitive to changes in trap depth. These measurements and scaling analysis constitute an essential systematic characterization for clock operation at the 10−1810^{-18} level and beyond.Comment: 5 + 2 pages, 3 figures, added supplementa
    • …
    corecore