3,454 research outputs found

    Wigner crystals in two-dimensional transition-metal dichalcogenides: Spin physics and readout

    No full text
    Wigner crystals are prime candidates for the realization of regular electron lattices under minimal requirements on external control and electronics. However, several technical challenges have prevented their detailed experimental investigation and applications to date. We propose an implementation of two-dimensional electron lattices for quantum simulation of Ising spin systems based on self-assembled Wigner crystals in transition-metal dichalcogenides. We show that these semiconductors allow for minimally invasive all-optical detection schemes of charge ordering and total spin. For incident light with optimally chosen beam parameters and polarization, we predict a strong dependence of the transmitted and reflected signals on the underlying lattice periodicity, thus revealing the charge order inherent in Wigner crystals. At the same time, the selection rules in transition-metal dichalcogenides provide direct access to the spin degree of freedom via Faraday rotation measurements.Comment: 15 pages, 12 figure

    Direct imaging Raman microscope based on tunable wavelength excitation and narrow band emission detection

    Get PDF
    A new type of imaging Raman microscope is described. First the advantages and disadvantages of the two possible approaches to Raman microscopy based on signal detection by means of a charge-coupled-device camera (i.e., direct imaging and image reconstruction) are discussed. Arguments are given to show that in most cases direct imaging is to be preferred over image reconstruction, because it provides the desired information in less time. In the direct imaging Raman microscope presented in this communication, detection of scattered light occurs in a narrow interval around a fixed wavelength. Selection of the Raman wavenumber shift at which an image is recorded is established by tuning the wavelength of the exciting laser light in such a way that the wavelength of the Raman scattered light with the desired Raman shift coincides with the detected wavelength. The microscope has been incorporated in a Raman microspectrometer in a way that enables easy switching between the imaging and the multichannel spectroscopy modes of operation. Bright field, fluorescence, and Raman microscopic images can be obtained

    Time-Varying Graphs and Dynamic Networks

    Full text link
    The past few years have seen intensive research efforts carried out in some apparently unrelated areas of dynamic systems -- delay-tolerant networks, opportunistic-mobility networks, social networks -- obtaining closely related insights. Indeed, the concepts discovered in these investigations can be viewed as parts of the same conceptual universe; and the formal models proposed so far to express some specific concepts are components of a larger formal description of this universe. The main contribution of this paper is to integrate the vast collection of concepts, formalisms, and results found in the literature into a unified framework, which we call TVG (for time-varying graphs). Using this framework, it is possible to express directly in the same formalism not only the concepts common to all those different areas, but also those specific to each. Based on this definitional work, employing both existing results and original observations, we present a hierarchical classification of TVGs; each class corresponds to a significant property examined in the distributed computing literature. We then examine how TVGs can be used to study the evolution of network properties, and propose different techniques, depending on whether the indicators for these properties are a-temporal (as in the majority of existing studies) or temporal. Finally, we briefly discuss the introduction of randomness in TVGs.Comment: A short version appeared in ADHOC-NOW'11. This version is to be published in Internation Journal of Parallel, Emergent and Distributed System

    From the Heart of The Ghoul: C and N Abundances in the Corona of Algol B

    Full text link
    Chandra Low Energy Transmission Grating Spectrograph observations of Algol have been used to determine the abundances of C and N in the secondary star for the first time. The analysis was performed relative to similar observations of an adopted "standard" star HR 1099. It is demonstrated that HR 1099 and Algol are coronal twins in many respects and that their X-ray spectra are very similar in nearly all details, except for the observed strengths of C and N lines. The H-like transitions of C and N in the coronae of Algol and HR 1099 demonstrate that the surface abundances of Algol B have been strongly modified by CN-processing, as shown earlier by Schmitt & Ness (2002). It is found that N is enhanced in Algol B by a factor of 3 compared to HR 1099. No C lines are detected in the Algol spectrum, indicating a C depletion relative to HR 1099 by a factor of 10 or more. These C and N abundances indicate that Algol B must have lost at least half of its initial mass, and are consistent with predictions of evolutionary models that include non-conservative mass transfer and angular momentum loss through magnetic activity. Little or no dredge-up of material subjected to CN-processing has occurred on the subgiant component of HR 1099. It is concluded that Fe is very likely depleted in the coronae of both Algol and HR 1099 relative to their photospheres by 0.5 dex, and C, N and O by 0.3 dex. Instead, Ne is enhanced by up to 0.5 dex.Comment: 17 pages, 4 figures, ApJ accepte

    Application of Raman Microspectroscopic and Raman imaging techniques for cell biological studies

    Get PDF
    Raman spectroscopy is being used to study biological molecules for some three decades now. Thanks to continuing advances in instrumentation more and more applications have become feasible in which molecules are studied in situ, and this has enabled Raman spectroscopy to enter the realms of biomedicine and cell biology [1-5].\ud Here we will describe some of the recent work carried out in our laboratory, concerning studies of human white blood cells and further instrumentational developments

    Visible diode lasers can be used for flow cytometric immunofluorescence and DNA analysis

    Get PDF
    This report describes a feasibility study concerning the use of a visible diode laser for two important fluorescence applications in a flow cytometer. With a 3 mW 635 nm. diode laser, we performed immunofluorescence measurements using the fluorophore allophycocyanin (APC). We have measured CD8 positive lymphocytes with a two-step labeling procedure and the resulting histograms showed good separation between the negative cells and the dim and the bright fluorescent subpopulations. As a second fluorescence application, we chose DNA analysis with the recently developed DNA/ RNA stains TOTO-3 and TO-PRO-3. In our setup TO-PRO-3 yielded the best results with a CV of 3.4%. Our results indicate that a few milliwatts of 635 nm light from a visible diode laser is sufficient to do single color immunofluorescence measurements with allophycocyanin and DNA analysis with TO-PRO-3. The major advantages of using a diode laser in a flow cytometer are the small size, the low price, the high efficiency, and the long lifetime

    Eclipsing Binaries in the OGLE Variable Star Catalogs.V. Long-Period Beta Lyrae-type Systems in the Small Magellanic Cloud and the PLC-beta Relation

    Full text link
    Thirty eight long-period (P>10 days), apparently contact binary stars discovered by the OGLE-II project in the SMC appear to be Beta Lyrae-type systems with ellipsoidal variations of the cool components dominating over eclipse effects in the systemic light variations and in the total luminosity. A new period-luminosity- color (PLC) relation has been established for these systems; we call it the PLC-beta relation, to distinguish it from the Cepheid relation. Two versions of the PLC-beta relation - based on the (B-V)0 or (V-I)0 color indices - have been calibrated for 33 systems with (V-I)0>0.25 spanning the orbital period range of 11 to 181 days. The relations can provide maximum-light, absolute-magnitude estimates accurate to epsilon-M_V~0.35 mag. within the approximate range -3<M_V<+1. In terms of their number in the SMC, the long-period Beta Lyrae-type binaries are about 50 times less common than the Cepheids. Nevertheless, their large luminosities coupled with continuous light variations make these binaries very easy to spot in nearby galaxies, so that the PLC-beta relation can offer an auxiliary and entirely independent method of distance determination to nearby stellar systems rich in massive stars. The sample of the long-period Beta Lyrae systems in the SMC analyzed in this paper is currently the best defined and uniform known sequence of such binaries.Comment: submitted for publication in Astronomical Journal; 8 PS figures, 2 table

    Millimetre-VLBI Monitoring of AGN with Sub-milliarcsecond Resolution

    Full text link
    Global millimetre VLBI allows detailed studies of the most central jet regions of AGN with unprecedent spatial resolution of a few 100-1000 Schwartzschild radii to be made. Study of these regions will help to answer the question how the highly relativistic AGN jets are launched and collimated. Since the early 1990s, bright mm-sources have been observed with global 3 mm VLBI. Here we present new images from an ongoing systematic analysis of the available observations. In particular, we focus on the structure and structural evolution of the best observed AGN jets, taking 3C 454.3 as a characteristic example. This core-dominated and highly variable quasar shows a complex morphology with individual jet components accelerating superluminally towards the outer structure. We briefly discuss the X-ray properties of 3C 454.3 and present its radio- to X-ray large-scale brightness distribution.Comment: 4 pages, 4 figures, Proceedings of the 7th EVN Symposium held in Toledo, Spain in October 2004, needs evn2004.cl

    Paragonimiasis In Iowa

    Get PDF
    The presence of the lung fluke, Paragonimus kelliocotti, was first recorded in the United States in a cat in 1894. It was first recognized in domesticated animals in Iowa in a dog from Blackhawk County in 1948. Subsequently, paragonimiasis has been diagnosed in dogs from Polk and Dallas counties. An additional case was found in a dog from an unrecorded county. Also, one cat from Story County has been found to harbor P. kellicotti
    • …
    corecore