1,530 research outputs found

    A boundary element regularised Stokeslet method applied to cilia and flagella-driven flow

    Full text link
    A boundary element implementation of the regularised Stokeslet method of Cortez is applied to cilia and flagella-driven flows in biology. Previously-published approaches implicitly combine the force discretisation and the numerical quadrature used to evaluate boundary integrals. By contrast, a boundary element method can be implemented by discretising the force using basis functions, and calculating integrals using accurate numerical or analytic integration. This substantially weakens the coupling of the mesh size for the force and the regularisation parameter, and greatly reduces the number of degrees of freedom required. When modelling a cilium or flagellum as a one-dimensional filament, the regularisation parameter can be considered a proxy for the body radius, as opposed to being a parameter used to minimise numerical errors. Modelling a patch of cilia, it is found that: (1) For a fixed number of cilia, reducing cilia spacing reduces transport. (2) For fixed patch dimension, increasing cilia number increases the transport, up to a plateau at 9×99\times 9 cilia. Modelling a choanoflagellate cell it is found that the presence of a lorica structure significantly affects transport and flow outside the lorica, but does not significantly alter the force experienced by the flagellum.Comment: 20 pages, 7 figures, postprin

    Attempted Bethe ansatz solution for one-dimensional directed polymers in random media

    Full text link
    We study the statistical properties of one-dimensional directed polymers in a short-range random potential by mapping the replicated problem to a many body quantum boson system with attractive interactions. We find the full set of eigenvalues and eigenfunctions of the many-body system and perform the summation over the entire spectrum of excited states. The analytic continuation of the obtained exact expression for the replica partition function from integer to non-integer replica parameter N turns out to be ambiguous. Performing the analytic continuation simply by assuming that the parameter N can take arbitrary complex values, and going to the thermodynamic limit of the original directed polymer problem, we obtain the explicit universal expression for the probability distribution function of free energy fluctuations.Comment: 32 pages, 1 figur

    Shocks in the asymmetric exclusion process with internal degree of freedom

    Get PDF
    We determine all families of Markovian three-states lattice gases with pair interaction and a single local conservation law. One such family of models is an asymmetric exclusion process where particles exist in two different nonconserved states. We derive conditions on the transition rates between the two states such that the shock has a particularly simple structure with minimal intrinsic shock width and random walk dynamics. We calculate the drift velocity and diffusion coefficient of the shock.Comment: 26 pages, 1 figur

    Deterministic reaction models with power-law forces

    Full text link
    We study a one-dimensional particles system, in the overdamped limit, where nearest particles attract with a force inversely proportional to a power of their distance and coalesce upon encounter. The detailed shape of the distribution function for the gap between neighbouring particles serves to discriminate between different laws of attraction. We develop an exact Fokker-Planck approach for the infinite hierarchy of distribution functions for multiple adjacent gaps and solve it exactly, at the mean-field level, where correlations are ignored. The crucial role of correlations and their effect on the gap distribution function is explored both numerically and analytically. Finally, we analyse a random input of particles, which results in a stationary state where the effect of correlations is largely diminished

    Quantized representation of some nonlinear integrable evolution equations on the soliton sector

    Full text link
    The Hirota algorithm for solving several integrable nonlinear evolution equations is suggestive of a simple quantized representation of these equations and their soliton solutions over a Fock space of bosons or of fermions. The classical nonlinear wave equation becomes a nonlinear equation for an operator. The solution of this equation is constructed through the operator analog of the Hirota transformation. The classical N-solitons solution is the expectation value of the solution operator in an N-particle state in the Fock space.Comment: 12 page

    The Kardar-Parisi-Zhang equation in the weak noise limit: Pattern formation and upper critical dimension

    Full text link
    We extend the previously developed weak noise scheme, applied to the noisy Burgers equation in 1D, to the Kardar-Parisi-Zhang equation for a growing interface in arbitrary dimensions. By means of the Cole-Hopf transformation we show that the growth morphology can be interpreted in terms of dynamically evolving textures of localized growth modes with superimposed diffusive modes. In the Cole-Hopf representation the growth modes are static solutions to the diffusion equation and the nonlinear Schroedinger equation, subsequently boosted to finite velocity by a Galilei transformation. We discuss the dynamics of the pattern formation and, briefly, the superimposed linear modes. Implementing the stochastic interpretation we discuss kinetic transitions and in particular the properties in the pair mode or dipole sector. We find the Hurst exponent H=(3-d)/(4-d) for the random walk of growth modes in the dipole sector. Finally, applying Derrick's theorem based on constrained minimization we show that the upper critical dimension is d=4 in the sense that growth modes cease to exist above this dimension.Comment: 27 pages, 19 eps figs, revte
    corecore