A boundary element implementation of the regularised Stokeslet method of
Cortez is applied to cilia and flagella-driven flows in biology.
Previously-published approaches implicitly combine the force discretisation and
the numerical quadrature used to evaluate boundary integrals. By contrast, a
boundary element method can be implemented by discretising the force using
basis functions, and calculating integrals using accurate numerical or analytic
integration. This substantially weakens the coupling of the mesh size for the
force and the regularisation parameter, and greatly reduces the number of
degrees of freedom required. When modelling a cilium or flagellum as a
one-dimensional filament, the regularisation parameter can be considered a
proxy for the body radius, as opposed to being a parameter used to minimise
numerical errors. Modelling a patch of cilia, it is found that: (1) For a fixed
number of cilia, reducing cilia spacing reduces transport. (2) For fixed patch
dimension, increasing cilia number increases the transport, up to a plateau at
9×9 cilia. Modelling a choanoflagellate cell it is found that the
presence of a lorica structure significantly affects transport and flow outside
the lorica, but does not significantly alter the force experienced by the
flagellum.Comment: 20 pages, 7 figures, postprin