179 research outputs found

    Design of an X-band constant impedance LINAC for compact light project

    Get PDF
    Within the framework of Horizon 2020 project, Compact Light, in order to provide a high performance, high-gradient X-band technology, for the new generation of hard X-ray FEL, a travelling wave (TW) Linac, working on 2pi/3 mode at 11.9952 GHz, fed by two types of asymmetrically couplers, has been designed. The design was performed using CST Microwave Studio frequency domain solver. First, simulations have been conduct in order to obtain the best trade-off between single cell’s parameters, varying iris aperture. Then, the both couplers, with and without pumping port, has been tuned to avoid reflections at the input port. Finally, the entire structure, with 5 cells, was simulated. The main structure parameters will be present and we will also show and discuss the acceleranting gradient obtained vary with linac lenght and input power

    Controlled growth of the self-modulation of a relativistic proton bunch in plasma

    Get PDF
    A long, narrow, relativistic charged particle bunch propagating in plasma is subject to the self-modulation (SM) instability. We show that SM of a proton bunch can be seeded by the wakefields driven by a preceding electron bunch. SM timing reproducibility and control are at the level of a small fraction of the modulation period. With this seeding method, we independently control the amplitude of the seed wakefields with the charge of the electron bunch and the growth rate of SM with the charge of the proton bunch. Seeding leads to larger growth of the wakefields than in the instability case.info:eu-repo/semantics/publishedVersio

    The AWAKE Run 2 Programme and beyond

    Get PDF
    Plasma wakefield acceleration is a promising technology to reduce the size of particle accelerators. The use of high energy protons to drive wakefields in plasma has been demonstrated during Run 1 of the AWAKE programme at CERN. Protons of energy 400 GeV drove wakefields that accelerated electrons to 2 GeV in under 10 m of plasma. The AWAKE collaboration is now embarking on Run 2 with the main aims to demonstrate stable accelerating gradients of 0.5–1 GV/m, preserve emittance of the electron bunches during acceleration and develop plasma sources scalable to 100s of metres and beyond. By the end of Run 2, the AWAKE scheme should be able to provide electron beams for particle physics experiments and several possible experiments have already been evaluated. This article summarises the programme of AWAKE Run 2 and how it will be achieved as well as the possible application of the AWAKE scheme to novel particle physics experiments.info:eu-repo/semantics/publishedVersio

    Observation of the TeV gamma-ray source MGRO J1908+06 with ARGO-YBJ

    Get PDF
    The extended gamma ray source MGRO J1908+06, discovered by the Milagro air shower detector in 2007, has been observed for about 4 years by the ARGO-YBJ experiment at TeV energies, with a statistical significance of 6.2 standard deviations. The peak of the signal is found at a position consistent with the pulsar PSR J1907+0602. Parametrizing the source shape with a two-dimensional Gauss function we estimate an extension \sigma = 0.49 \pm 0.22 degrees, consistent with a previous measurement by the Cherenkov Array H.E.S.S.. The observed energy spectrum is dN/dE = 6.1 \pm 1.4 \times 10^-13 (E/4 TeV)^{-2.54 \pm 0.36} photons cm^-2 s^-1 TeV^-1, in the energy range 1-20 TeV. The measured gamma ray flux is consistent with the results of the Milagro detector, but is 2-3 times larger than the flux previously derived by H.E.S.S. at energies of a few TeV. The continuity of the Milagro and ARGO-YBJ observations and the stable excess rate observed by ARGO-YBJ along 4 years of data taking support the identification of MGRO J1908+06 as the steady powerful TeV pulsar wind nebula of PSR J1907+0602, with an integrated luminosity above 1 TeV about 1.8 times the Crab Nebula luminosity.Comment: 6 pages, accepted for pubblication by ApJ. Replaced to correct the author lis

    Accommodating a Non-Conservative Internal Mutation by WaterMediated Hydrogen-Bonding Between β-Sheet Strands: A Comparison of Human and Rat Type B (Mitochondrial) Cytochrome b5

    Get PDF
    Mammalian type B (mitochondrial) cytochromes b5 exhibit greater amino acid sequence diversity than their type A (microsomal) counterparts, as exemplified by the type B proteins from human (hCYB5B) and rat (rCYB5B). The comparison of X-ray crystal structures of hCYB5B and rCYB5B reported herein reveals a striking difference in packing involving the five-stranded β-sheet, attributable to fully buried residue 21 in strand β4. The greater bulk of Leu21 in hCYB5B in comparison to Thr21 in rCYB5B results in a substantial displacement of the first two residues in β5, and consequent loss of two of the three hydrogen bonds between β5 and β4. Hydrogen-bonding between the residues is instead mediated by two well-ordered, fully buried water molecules. In a 10 ns molecular dynamics simulation, one of the buried water molecules in the hCYB5B structure exchanged readily with solvent via intermediates having three water molecules sandwiched between β4 and β5. When the buried water molecules were removed prior to a second 10 ns simulation, β4 and β5 formed persistent hydrogen bonds identical to those in rCYB5B, but the Leu21 side chain was forced to adopt a rarely observed conformation. Despite the apparently greater ease of water access to the interior of hCYB5B than of rCYB5B suggested by these observations, the two proteins exhibit virtually identical stability, dynamic and redox properties. The results provide new insight into the factors stabilizing the cytochrome b5 fold

    Development of the self-modulation instability of a relativistic proton bunch in plasma

    Get PDF
    Self-modulation is a beam–plasma instability that is useful to drive large-amplitude wakefields with bunches much longer than the plasma skin depth. We present experimental results showing that, when increasing the ratio between the initial transverse size of the bunch and the plasma skin depth, the instability occurs later along the bunch, or not at all, over a fixed plasma length because the amplitude of the initial wakefields decreases. We show cases for which self-modulation does not develop, and we introduce a simple model discussing the conditions for which it would not occur after any plasma length. Changing bunch size and plasma electron density also changes the growth rate of the instability. We discuss the impact of these results on the design of a particle accelerator based on the self-modulation instability seeded by a relativistic ionization front, such as the future upgrade of the Advanced WAKefield Experiment

    Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport

    Get PDF
    Gram-negative bacteria, such as Escherichia coli, frequently utilize tripartite efflux complexes in the resistance-nodulation-cell division (RND) family to expel diverse toxic compounds from the cell.1,2 The efflux system CusCBA is responsible for extruding biocidal Cu(I) and Ag(I) ions.3,4 No prior structural information was available for the heavy-metal efflux (HME) subfamily of the RND efflux pumps. Here we describe the crystal structures of the inner membrane transporter CusA in the absence and presence of bound Cu(I) or Ag(I). These CusA structures provide important new structural information about the HME sub-family of RND efflux pumps. The structures suggest that the metal binding sites, formed by a three-methionine cluster, are located within the cleft region of the periplasmic domain. Intriguingly, this cleft is closed in the apo-CusA form but open in the CusA-Cu(I) and CusA-Ag(I) structures, which directly suggests a plausible pathway for ion export. Binding of Cu(I) and Ag(I) triggers significant conformational changes in both the periplasmic and transmembrane domains. The crystal structure indicates that CusA has, in addition to the three-methionine metal binding site, four methionine pairs - three located in the transmembrane region and one in the periplasmic domain. Genetic analysis and transport assays suggest that CusA is capable of actively picking up metal ions from the cytosol, utilizing these methionine pairs/clusters to bind and export metal ions. These structures suggest a stepwise shuttle mechanism for transport between these sites

    Copper-Triggered Aggregation of Ubiquitin

    Get PDF
    Neurodegenerative disorders share common features comprising aggregation of misfolded proteins, failure of the ubiquitin-proteasome system, and increased levels of metal ions in the brain. Protein aggregates within affected cells often contain ubiquitin, however no report has focused on the aggregation propensity of this protein. Recently it was shown that copper, differently from zinc, nickel, aluminum, or cadmium, compromises ubiquitin stability and binds to the N-terminus with 0.1 micromolar affinity. This paper addresses the role of copper upon ubiquitin aggregation. In water, incubation with Cu(II) leads to formation of spherical particles that can progress from dimers to larger conglomerates. These spherical oligomers are SDS-resistant and are destroyed upon Cu(II) chelation or reduction to Cu(I). In water/trifluoroethanol (80∶20, v/v), a mimic of the local decrease in dielectric constant experienced in proximity to a membrane surface, ubiquitin incubation with Cu(II) causes time-dependent changes in circular dichroism and Fourier-transform infrared spectra, indicative of increasing β-sheet content. Analysis by atomic force and transmission electron microscopy reveals, in the given order, formation of spherical particles consistent with the size of early oligomers detected by gel electrophoresis, clustering of these particles in straight and curved chains, formation of ring structures, growth of trigonal branches from the rings, coalescence of the trigonal branched structures in a network. Notably, none of these ubiquitin aggregates was positive to tests for amyloid and Cu(II) chelation or reduction produced aggregate disassembly. The early formed Cu(II)-stabilized spherical oligomers, when reconstituted in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes and in POPC planar bilayers, form annular and pore-like structures, respectively, which are common to several neurodegenerative disorders including Parkinson's, Alzheimer's, amyotrophic lateral sclerosis, and prion diseases, and have been proposed to be the primary toxic species. Susceptibility to aggregation of ubiquitin, as it emerges from the present study, may represent a potential risk factor for disease onset or progression while cells attempt to tag and process toxic substrates
    corecore