124 research outputs found

    Analysis of the mechanical impedance of bone-anchored hearing aids

    Get PDF
    Some patients who need hearing aids are unable to use an apparatus which transmits the sound via the external ear canal and have to use a bone conduction hearing aid. The bone vibration transducer of this aid is applied to the skin over the mastoid process and the sound is transmitted via the soft tissue and bone to the cochlea. The pressure needed to apply the transducer often gives the patient discomfort and the damping effect of the soft tissue gives poor quality of the sound transmitted. Advances in the ability to permanently implant foreign material in the body and perform permanent skin penetration has made it possible to develop a bone-anchored hearing aid. Fourteen patients have been equipped with such hearing aids. To be able to give these patients the best hearing aid, a new transducer has to be constructed to match the new situation. The impedance of the bone-anchored titaniumscrew/skull has been studied and the resistance and reactance of the mechanical impedance have been measured. The influence of a damping soft tissue layer over the bone has been analyzed. The difference between the impedance of the skull and the impedance of the soft tissue + skull was in the order of 10 to 25 dB depending on the frequency

    SL(2,Z) tensionless string backgrounds in IIB string theory

    Full text link
    We examine a tensionless limit of a SL(2,Z) set of background solutions to IIB supergravity theory, obtained by performing an infinite boost. This yields a solution that corresponds to taking the original string tension to zero. The limit reproduces ordinary Minkowski space except for a delta-like singularity along the string. We study the field content and the energy momentum tensor.Comment: 1+8 pages, LaTeX, JHEP styl

    Transition density of diffusion on Sierpinski gasket and extension of Flory's formula

    Full text link
    Some problems related to the transition density u(t,x) of the diffusion on the Sierpinski gasket are considerd, based on recent rigorous results and detailed numerical calculations. The main contents are an extension of Flory's formula for the end-to-end distance exponent of self-avoiding walks on the fractal spaces, and an evidence of the oscillatory behavior of u(t,x) on the Sierpinski gasket.Comment: 11 pages, REVTEX, 2 postscript figure

    Targeted sequencing to identify novel genetic risk factors for deep vein thrombosis: a study of 734 genes

    Get PDF
    Essentials Deep vein thrombosis (DVT) has a large unknown genetic component. We sequenced coding areas of 734 hemostasis-related genes in 899 DVT patients and 599 controls. Variants in F5, FGA-FGG, CYP4V2-KLKB1-F11, and ABO were associated with DVT risk. Associations in KLKB1 and F5 suggest a more complex genetic architecture than previously thought. Summary: Background Although several genetic risk factors for deep vein thrombosis (DVT) are known, almost all related to hemostasis, a large genetic component remains unexplained. Objectives To identify novel genetic determinants by using targeted DNA sequencing. Patients/Methods We included 899 DVT patients and 599 controls from three case\u2013control studies (DVT-Milan, Multiple Environmental and Genetic Assessment of risk factors for venous thrombosis [MEGA], and the Thrombophilia, Hypercoagulability and Environmental Risks in Venous Thromboembolism [THE-VTE] study) for sequencing of the coding regions of 734 genes involved in hemostasis or related pathways. We performed single-variant association tests for common variants (minor allele frequency [MAF] 65 1%) and gene-based tests for rare variants (MAF 64 1%), accounting for multiple testing by use of the false discovery rate (FDR). Results Sixty-two of 3617 common variants were associated with DVT risk (FDR 0.2). Conclusions We confirmed associations between DVT and common variants in F5,ABO,FGA\u2013FGG, and CYP4V2\u2013KLKB1\u2013F11, and observed secondary signals in F5 and CYP4V2\u2013KLKB1\u2013F11 that warrant replication and fine-mapping in larger studies
    corecore