93 research outputs found

    Vortex glass transition in a random pinning model

    Full text link
    We study the vortex glass transition in disordered high temperature superconductors using Monte Carlo simulations. We use a random pinning model with strong point-correlated quenched disorder, a net applied magnetic field, longrange vortex interactions, and periodic boundary conditions. From a finite size scaling study of the helicity modulus, the RMS current, and the resistivity, we obtain critical exponents at the phase transition. The new exponents differ substantially from those of the gauge glass model, but are consistent with those of the pure three-dimensional XY model.Comment: 7 pages RevTeX, 4 eps figure

    Bragg-Bose glass phase in vortex states of high-TcT_{\rm c} superconductors with sparse and weak columnar defects

    Full text link
    Phase diagram of vortex states of high-TcT_{\rm c} superconductors with {\it sparse and weak} columnar defects is obtained by large-scale Monte Carlo simulations of the three-dimensional anisotropic, frustrated XY model. The Bragg-Bose glass phase characterized by hexagonal Bragg spots and the diverging tilt modulus is observed numerically for the first time at low density of columnar defects. As the density of defects increases, the melting temperature increases owing to "selected pinning" of flux lines. When the density of defects further increases, the transition to the Bose glass phase occurs. The interstitial liquid region is observed between these two glass phases and the vortex liquid phase.Comment: using RevTex4, 4 pages, 8 figures (5 captions

    Zero Temperature Glass Transition in the Two-Dimensional Gauge Glass Model

    Full text link
    We investigate dynamic scaling properties of the two-dimensional gauge glass model for the vortex glass phase in superconductors with quenched disorder. From extensive Monte Carlo simulations we obtain static and dynamic finite size scaling behavior, where the static simulations use a temperature exchange method to ensure convergence at low temperatures. Both static and dynamic scaling of Monte Carlo data is consistent with a glass transition at zero temperature. We study a dynamic correlation function for the superconducting order parameter, as well as the phase slip resistance. From the scaling of these two functions, we find evidence for two distinct diverging correlation times at the zero temperature glass transition. The longer of these time scales is associated with phase slip fluctuations across the system that lead to finite resistance at any finite temperature, while the shorter time scale is associated with local phase fluctuations.Comment: 8 pages, 10 figures; v2: some minor correction

    Evidence of Two Distinct Dynamic Critical Exponents in Connection with Vortex Physics

    Full text link
    The dynamic critical exponent zz is determined from numerical simulations for the three-dimensional (3D) lattice Coulomb gas (LCG) and the 3D XY models with relaxational dynamics. It is suggested that the dynamics is characterized by two distinct dynamic critical indices z0z_0 and zz related to the divergence of the relaxation time τ\tau by τξz0\tau\propto \xi^{z_0} and τkz\tau\propto k^{-z}, where ξ\xi is the correlation length and kk the wavevector. The values determined are z01.5z_0\approx 1.5 and z1z\approx 1 for the 3D LCG and z01.5z_0\approx 1.5 and z2z\approx 2 for the 3D XY model. It is argued that the nonlinear IVIV exponent relates to z0z_0, whereas the usual Hohenberg-Halperin classification relates to zz. Possible implications for the interpretation of experiments are pointed out. Comparisons with other existing results are discussed.Comment: to appear in PR

    Phase Diagram of the Two Dimensional Lattice Coulomb Gas

    Full text link
    We use Monte Carlo simulations to map out the phase diagram of the two dimensional Coulomb gas on a square lattice, as a function of density and temperature. We find that the Kosterlitz-Thouless transition remains up to higher charge densities than has been suggested by recent theoretical estimates.Comment: 4 pages, including 6 in-line eps figure

    Non-spherical shapes of capsules within a fourth-order curvature model

    Get PDF
    We minimize a discrete version of the fourth-order curvature based Landau free energy by extending Brakke's Surface Evolver. This model predicts spherical as well as non-spherical shapes with dimples, bumps and ridges to be the energy minimizers. Our results suggest that the buckling and faceting transitions, usually associated with crystalline matter, can also be an intrinsic property of non-crystalline membranes.Comment: 6 pages, 4 figures (LaTeX macros EPJ), accepted for publication in EPJ

    Interstitial Fractionalization and Spherical Crystallography

    Get PDF
    Finding the ground states of identical particles packed on spheres has relevance for stabilizing emulsions and a venerable history in the literature of theoretical physics and mathematics. Theory and experiment have confirmed that defects such as disclinations and dislocations are an intrinsic part of the ground state. Here we discuss the remarkable behavior of vacancies and interstitials in spherical crystals. The strain fields of isolated disclinations forced in by the spherical topology literally rip interstitials and vacancies apart, typically into dislocation fragments that combine with the disclinations to create small grain boundary scars. The fractionation is often into three charge-neutral dislocations, although dislocation pairs can be created as well. We use a powerful, freely available computer program to explore interstitial fractionalization in some detail, for a variety of power law pair potentials. We investigate the dependence on initial conditions and the final state energies, and compare the position dependence of interstitial energies with the predictions of continuum elastic theory on the sphere. The theory predicts that, before fragmentation, interstitials are repelled from 5-fold disclinations and vacancies are attracted. We also use vacancies and interstitials to study low energy states in the vicinity of "magic numbers" that accommodate regular icosadeltahedral tessellations.Comment: 21 pages, 9 figure

    Critical Dynamics of a Vortex Loop Model for the Superconducting Transition

    Full text link
    We calculate analytically the dynamic critical exponent zMCz_{MC} measured in Monte Carlo simulations for a vortex loop model of the superconducting transition, and account for the simulation results. In the weak screening limit, where magnetic fluctuations are neglected, the dynamic exponent is found to be zMC=3/2z_{MC} = 3/2. In the perfect screening limit, zMC=5/2z_{MC} = 5/2. We relate zMCz_{MC} to the actual value of zz observable in experiments and find that z2z \sim 2, consistent with some experimental results

    Nature of the vortex-glass order in strongly type-II superconductors

    Full text link
    The stability and the critical properties of the three-dimensional vortex-glass order in random type-II superconductors with point disorder is investigated in the unscreened limit based on a lattice {\it XY} model with a uniform field. By performing equilibrium Monte Carlo simulations for the system with periodic boundary conditions, the existence of a stable vortex-glass order is established in the unscreened limit. Estimated critical exponents are compared with those of the gauge-glass model.Comment: Error in the reported value of the exponent eta is correcte
    corecore