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Abstract

Finding the ground states of identical particles packed on spheres
has relevance for stabilizing emulsions and a venerable history in the
literature of theoretical physics and mathematics. Theory and experi-
ment have confirmed that defects such as disclinations and dislocations
are an intrinsic part of the ground state. Here we discuss the remark-
able behavior of vacancies and interstitials in spherical crystals. The
strain fields of isolated disclinations forced in by the spherical topology
literally rip interstitials and vacancies apart, typically into dislocation
fragments that combine with the disclinations to create small grain
boundary scars. The fractionation is often into three charge-neutral
dislocations, although dislocation pairs can be created as well. We use
a powerful, freely available computer program to explore interstitial
fractionalization in some detail, for a variety of power law pair po-
tentials. We investigate the dependence on initial conditions and the
final state energies, and compare the position dependence of intersti-
tial energies with the predictions of continuum elastic theory on the
sphere. The theory predicts that, before fragmentation, interstitials
are repelled from 5-fold disclinations and vacancies are attracted. We
also use vacancies and interstitials to study low energy states in the
vicinity of “magic numbers” that accommodate regular icosadeltahe-
dral tessellations.
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1 Introduction

Producing stable emulsions of two immiscible fluids, such as oil and water,
is a challenging and important problem, not only because of technical appli-
cations but also from the perspective of fundamental science. One strategy
for stabilizing emulsions, dating back at least 100 years [1], involves coat-
ing droplets of one phase with small colloidal particles to impede droplet
coalescence [2]. The colloidal “armor plating” of these Pickering emulsions
also plays a role in colloidosomes, colloid-coated lipid bilayer vesicles used
for encapsulation and delivery of flavors, fragrances and drugs [3]. Identical
micron-sized particles tend to crystallize under typical experimental condi-
tions, and it is of some interest to understand the defect structure of locally
crystalline ground states on a sphere, since these influence the strength of
the colloidal armor. Understanding particle packings on a sphere also in-
volves fundamental questions of theoretical physics and mathematics, dating
back to work by J. J. Thomson in 1904 [4]. Although Thomson was inter-
ested in electrons interacting with a repulsive 1/r potential [5, 6, 7, 8], the
problem of determining crystalline ground states on a sphere can be posed
more generally in terms of continuum elastic theory, Young’s moduli and
defect core energies, for particles interacting with a wide variety of pair
potentials [9, 10, 11].

Defects play an essential role in describing crystalline particle packings
on the sphere. At least twelve particles with 5-fold coordination (i.e., 12
disclinations) are required for topological reasons, and like the 5-fold rings
in carbon fullerenes, one might expect that the energy would be minimized if
the disclination positions approximated the vertices of a regular icosahedron.
This expectation, which also plays a role in geodesic domes and in the pro-
tein capsomere configurations of spherical virus shells [12, 13], is nevertheless
violated when the shells are sufficiently large and disclination buckling [14]
out of the spherical environment is suppressed by surface tension. Consistent
with theoretical expectations [7, 8, 9], experiments on particle-coated water
droplets in oil [15] reveal that the twelve excess disclinations sprout grain
boundary “scars” for sufficiently large R/a, where R is the sphere radius
and a is the average particle spacing. When triangulations of microscopic
particle packings are used to reveal the local coordination number, these
grain boundaries appear as additional dislocations, i.e., 5-7 pairs, arrayed
around an unpaired 5, in a pattern such as 5-7–5-7–5–7-5–7-5. Although
the critical value of R/a above which grain boundaries appear depends on
microscopic details, both theoretical estimates [9] and experiments [15] in-
dicate that this instability arises as soon as R/a & 5−6, i.e., when the total
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number of particles exceeds several hundred. Thus, unlike crystals in flat
space, dislocations arrayed in grain boundaries are an intrinsic part of the
ground state. These grain boundaries can, moreover, stop and start freely
on the sphere, unlike their flat space counterparts. Such terminations occur
naturally (and with low energy cost) because crystalline grains rotate under
parallel transport due to the nonzero Gaussian curvature of the sphere.

If disclinations and dislocations are crucial for understanding spher-
ical crystallography, what can we say about vacancies and interstitials,
which are well known to play a key role in conventional crystals [16]? It
is natural to introduce vacancies and interstitials in an attempt to under-
stand spherical particle packings that deviate from certain “magic numbers”
Nnm. These preferred particle numbers, introduced by Caspar and Klug
in their analysis of viral shells [12], refer to special commensurate spheri-
cal tessellations, indexed by a pair of integers (n,m). The corresponding
particle number associated with these commensurate particle packings is
Nnm = 10(n2 + m2 + nm) + 2. It is tempting to ignore the instability to
grain boundary scars for large Nnm and regard the commensurate (n,m) lat-
tice as an interesting metastable state. It would then be natural to introduce
vacancies and interstitials to describe candidate ground state packings for
Nnm ± t particles, where t = 1, 2, ... and much less than the distance to the
next magic number. There is, however, another surprise in store: In contrast
to flat space, where vacancy and interstitial defects are stable and well de-
fined, we find that interstitials and vacancies are typically ripped apart into
dislocation fragments by the strain fields of nearby 5-fold disclinations. The
dislocations then combine with some of the excess 5’s to form defect clusters
such 7-5-7. Thus, vacancies and interstitials lose their integrity via fragmen-
tation in spherical crystals, and mediate formation of small grain boundary
scars. A full account of the ground states on the sphere for Nnm± t particles
is beyond the scope of this paper. We present here, however, a study of the
fragmentation process itself. We concentrate on interstitials for simplicity.
Although vacancies behave in a similar fashion and can be studied by the
same computer program [17], the theoretical analysis is more complicated
for vacancies, which are typically crushed by elastic forces into objects with
a low two-fold symmetry, even in flat space [18, 19]. In addition, we com-
pare our results for interstitial energies (which are position-dependent) to
predictions of continuum elastic theory and provide information about the
energetics in the vicinity of (n,m) commensurate spherical tessellations.

We begin by studying in Section 2 the fractionalization of interstitials
in two-dimensional curved crystals via numerical simulations of the general-
ized Thomson problem [17]. Interstitials (or vacancies) in a sufficiently large
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spherical crystal are, unlike in flat space, unstable to unbinding into several
individual dislocations, each of which glides towards the nearest disclination,
eventually forming the small grain boundary scars mentioned above [20]. In
this section, we investigate such unstable interstitials and their fractionaliza-
tion in some detail. We determine the energy of interstitials before and after
fragmentation as a function of their position relative to the twelve excess
disclinations that are inevitably present in a spherical crystal in Sections 3
and 4. In Section 5, we calculate the interaction energy of interstitials with
the extra disclinations within continuum elasticity theory. Finally, we dis-
cuss ground state energies close to preferred “magic numbers” of particles
on the sphere corresponding to the regular icosadeltahedra of Caspar and
Klug [12].

Figure 1: Initial icosahedral configuration of an (8,3) spherical crystal lattice
with 12 disclination defects. This lattice is chiral, and is arranged such
that 8 steps along a Bragg row, followed by 3 steps to the right along a
Bragg row at a 120◦ angle, connect neighboring 5-fold disclinations. Distinct
initial locations for interstitials are shown as triangular plaquettes labeled
by characters and numbers.
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2 Interstitial fractionalization

An icosahedral spherical crystalline lattice (a regular icosadeltahedron) can
be constructed for every pair of integers (n,m), where the number of vertices
or particles in the tessellation is given by the “magic numbers” Nnm:

Nnm = 10(n2 + nm + m2) + 2 . (1)

We are interested in studying the effect of inserting an interstitial or a va-
cancy into a regular (n,m) icosahedral lattice by adding or removing a single
particle, giving rise to particle numbers Nnm ± 1 not falling in the classi-
fication of Eq. (1) and in studying the relation of interstitials to the extra
dislocation defects (scars) found in spherical crystals above a critical system
size [9, 15]. Refs. [18, 19, 21, 22, 23, 24] study configurations and energies
of interstitial and vacancy defects and their energetics in triangular lattices
in flat space.

The presence of excess dislocation defects in the ground state of spherical
crystals is dramatically illustrated by the following numerical experiment:
we start with a regular icosadeltahedral tessellation of the sphere – say an
(8, 3), corresponding to N83 = 972 (Fig. 1). This may be done with the ap-
plet located at [17] using the Construct (m,n) algorithm. Although the true
ground state for 972 particles on the sphere with most pair potentials has ad-
ditional dislocation defects (i.e. tightly bound pairs of 5- and 7- coordinated
particles) arrayed in grain boundary scars [9], the regular icosadeltahedral
lattice is a local minimum from which it is difficult to escape without the
addition of thermal noise. In fact it is a major challenge to find fast and
reliable algorithms to locate the true ground state (global minimum) in this
problem with its complex energy landscape. Now add a single particle to
the lattice at the center of mass of a spherical triangle whose vertices are
3 nearest-neighbor 5-fold disclinations (shift + click). The self-interstitial

so formed is then relaxed by a standard relaxation algorithm, with suffi-
cient thermal noise to allow dislocation glide over the Peierls potential [25].
One immediately finds that an interstitial is structurally unstable. In a few
time steps it morphs into a complex of dislocations with zero net Burgers
vector. The most common structure observed is a set of three dislocations,
with Burgers vectors perpendicular to a line joining each 5-7 pair, inclined
at 120◦ angles to each other. Eventually the interstitial complex is ripped
apart entirely, as illustrated schematically in Fig. 2 (see also Fig. 3). Inter-
mediate configurations and final states as the dislocations glide apart will
be classified later. Most often three separate dislocations are formed which
each glide toward a 5-fold disclination. The end result is the formation of a

5



Figure 2: A schematic of interstitial fractionization. The ⊣ symbols are
alternative ways of representing dislocations depicted elsewhere as 5-7 pairs.

“mini-scar” (a 5−7−5 grain boundary) at each of the vertex 5s. Subsequent
removal of a particle to restore the particle number to the original 972 and
relaxing still leaves scars with total energy lower than the starting configura-
tion with 12 isolated 5’s. This observation confirms that scars are definitely
lower energy states and not simply artifacts of the relaxation algorithm.

The above phenomenon of low-temperature (T & 0) unbinding of dis-
locations by spatial curvature is a curved space analog of melting at finite
temperature. The extended nature of fractionated interstitials (each sep-
arating dislocation component involves an extra row of particles) means
that they cannot be treated as small perturbations from the initial spherical
crystal with particle number Nnm.

Let’s return to the specific case of the N = 973 particle configuration
generated by an interstitial inserted into one triangular plaquette of a reg-
ular (8, 3) lattice of Nnm = 972 particles with the requisite 12 disclination
defects (5-fold coordinated particles) at the vertices of a regular icosahe-
dron, as shown in Fig. 1. The spherical crystal is distorted by the additional
particle – the local configuration adopted by the interstitial changes as the
crystal relaxes toward a lower energy state. As in the case of planar lattices,
we also find here that the various interstitial defect configurations appear,
such as the twofold symmetric interstitial I2, the threefold symmetric inter-
stitial I3, and the fourfold symmetric interstitial I4 (see Figs. 3, 4, and 5).
The most common intermediate complex formed by the interstitial is three-
fold symmetric in the rough form of a triangular loop composed of three
dislocations with radially oriented Burgers vectors. All of the configurations
adopted by an interstitial prior to unbinding can be described as a set of
dislocations with zero net Burgers vector.

In marked contrast to interstitial defects in a planar crystal, interstitial
defect configurations in a spherical crystal are metastable states with charac-
teristic decay processes. As we shall see, the instability is caused by interac-
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Figure 3: The fractionalization of an interstitial defect inserted at the center
of three neighboring disclinations in an (8,3) spherical tessellation: (a) the
initial interstitial defect configuration (I3) shown surrounded by a triangu-
lar reference contour; (b) the bound defect unbinds to form three separate
dislocations (5-7)- pairs; (c) each dislocation glides (i.e., moves parallel to
its Burgers vector) towards the nearest disclination; (d) three mini-grain
boundary scars are formed. We also keep track of the evolution of the ini-
tial defect in (a) by illustrating the deformation of the triangular contour
around the initial defect for (b), (c), and (d) induced by the passage of the
dislocation.

tions with the inevitable disclinations associated with the nonzero Gaussian
curvature of the sphere. A representative evolution of an interstitial inserted
at the center of three neighboring disclinations in an (8, 3) icosadeltahedron
is shown in Fig. 3. After some local relaxation the interstitial configuration
denoted I3 is formed, as shown in Fig. 3 (a). We also show there the con-
struction of a triangular contour surrounding the original interstitial defect.
The presence of an interstitial follows because the contour encloses 7 par-
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ticles instead of 6, the number appropriate to a perfect triangular lattice.
During the annealed relaxation illustrated in Figs. 3(b) through (d), the
dislocations which are bound together in the initial interstitial unbind into
individual dislocations and subsequently glide towards nearby disclinations,
eventually forming minimal 5-7-5 grain boundary scars. If one thinks of the
initial dislocations as internal degrees of freedom within the interstitial, one
could say that one-third of an interstitial is present in each mini-scar in the
final state and thus that the interstitial demonstrates 1/3 fractionalization.
For other initial conditions the fractionation is into two dislocations, each
representing 1/2 of the original interstitial. The instability of interstitial
defects in curved crystals may be studied via continuum elasticity theory
by calculating the interaction energies between defects at each stage of the
relaxation process of Fig. 3 [20]. We note that the triangular plaquette
around the initial defect has been deformed such that it conforms as closely
as possible to the regular triangular lattice during the relaxation process.
Its deformation reveals the passage of the escaping dislocations.

3 Interstitial defect energies

In this section, we discuss the energy of an interstitial defect in a spherical
crystal. Consider N point particles constrained to lie on the two-dimensional
surface of a unit sphere. The energy of N particles interacting through a
generalized Coulomb potential within the curved surface is given by

E =
1

2

∑

i,j

1

|ri − rj|s
, (2)

where ri is the position of the particle in three dimensions and s is an
integer. For a flat triangular lattice with periodic boundary conditions, the
interstitial defect energy at constant density was defined in [21, 22] as

EI = Erelaxed − Eper , (3)

where Erelaxed is the relaxed energy of the rearranged lattice of N parti-
cles with the interstitial defect in the area A, and Eper is the energy of the
perfect crystal at the same areal density N/A. In curved space, however,
the definition of a “perfect crystal” is more subtle, since disclination de-
fects resulting from the Gaussian curvature and the topology are inevitable.
We will take as a reference crystal the (n,m) icosadeltahedral configura-
tions corresponding to triangular tessellations of a magic number of particles
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Nnm = 10(n2 + m2 + nm) + 2. Once an interstitial or vacancy is added to
such a (n,m) configuration, we are no longer at a magic number of particles
since these are quite sparsely distributed. We thus need to define the energy
of the perfect crystal.

Here we define the energy of the interstitial (vacancy) defect at constant
density in the spherical crystal as

EI = Elocal − E∗
annealed , (4)

where Elocal measures the energy of the relaxed interstitial while the con-
stituent dislocations are still bound and E∗

annealed is the minimum energy of
all possible final states attained after annealed relaxation leading to intersti-
tial fractionalization. This definition will be more explicitly discussed in the
following section (see Table 2). We note that both Elocal and E∗

annealed are
measured at the same areal density (Nnm ± 1)/A, where ±1 correspond to
an interstitial (vacancy) respectively. The lowest relaxed energy E∗

annealed

plays the role of the energy of the perfect lattice in the planar case at the
density of (Nnm ± 1)/A.

We have performed numerical measurements of Elocal and E∗
annealed for

the power-law potentials with s = 1, 3, 6 and 12, by adding one intersti-
tial at the center of a spherical triangle formed by three nearest-neighbor
disclinations in the (8, 3) lattice (the location represented by C in Fig. 1).
Elocal is measured by quenching the system at the moment just prior to the
fractionation of the interstitial into individual dislocations ((a) in Fig. 3).
The results are reported in Table 1.

s 1 3 6 12

local 456601.99 2840600.7 9.62182 ×108 3.03015 ×1014

annealed 456600.91 2840025.5 9.60570 ×108 3.00313 ×1014

Elocal − E∗
annealed 1.08 575.2 0.01612 ×108 0.02702 ×1014

Table 1: The lowest local and annealed relaxed energy with the central in-
terstitials created by putting a particle at C in Fig. 1 of the (8, 3) lattice, for
s = 1, 3, 6, and 12. The differences between two relaxed energies are calcu-
lated. Because the particles are embedded in a sphere of unit radius with our
conventions, near-neighbor particle spacings are of order a ∼ N−1/2 ≪ 1,
leading to a strong s dependence in the total energy given by Eq. (2).
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4 Position dependence of interstitial defect ener-

gies

By adding a particle in different plaquettes within the large spherical trian-
gle of Fig. 1, one can explore the dependence of the final state on the initial
interstitial location. In contrast to the case for planar crystals, both the
location and orientation of the interstitial defect relative to nearby disclina-
tions influences the resultant configuration and its corresponding evolution,
leading to distinct relaxed configurations.

The insertion of a particle at the center of the large spherical triangle
leads to an I3-type initial configuration, whereas adding the interstitial to
the plaquette along an edge results in an I2-type initial configuration.

During the relaxation process, we also find that the dislocation complex
representing an interstitial can rotate so as to reorient the Burgers vectors
so that constituent dislocations can glide towards a nearby disclination and
bind to it. This phenomenon is especially noticeable if we place one extra
particle slightly off from the absolute center C, such as the locations C ′ or
0 in Fig. 1.

In Fig. 4 and Fig. 5 we illustrate this phenomenon more explicitly. In
Fig. 4(a), an interstitial initially placed at the position C ′ in Fig. 1 morphs
quickly to an I3 configuration. In (a), however, the orientations of the dislo-
cations within I3 are not appropriate for dislocation glide to the surrounding
disclinations since the 5 end of the dislocations point towards rather than
away from these 5-fold disclinations, causing them to be repelled. Glide-
induced fractionalization is therefore prohibited in this orientation. Re-

Figure 4: The rotational motion of an interstitial configuration (created with
the initial location C ′ in Fig. 1) mediated by the transition: I3 → I2 → I3
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Figure 5: The rotational motion of an interstitial configuration (created with
the initial location 0 in Fig. 1) mediated by the transition: I3 → I4 → I3

markably, though, the entire complex of dislocations can change its orien-
tation by a transition through an intermediate I2 configuration (shown in
Fig. 4(b)) and subsequently to a second I3 configuration (Fig. 4(c)). The fi-
nal I3 configuration is rotated by 60◦ with respect to the first I3 and can now
fractionate analogously to an interstitial with initial position C in Fig. 1.

We also find rotational reorientation of an interstitial defect with an
I4-type intermediate state, as shown in Fig. 5. This particular relaxation
process reveals an interesting feature of dislocation dynamics on a curved
surface. The I3 configuration generated after the intermediate (see Fig. 5(c))
now has one dislocation with its glide plane such that it can glide head-on
into a vertex disclination. This disclination absorbs the dislocation but hops
over one lattice spacing to accommodate the curved space Burgers vector.
The other two dislocations end up bound in the form of mini-scars. In this
case then the interstitial has fractionated into 2 rather than 3 parts and one
say that there has been 1/2 fractionization of the interstitial. Absorption
and emission of dislocations by 5-fold disclinations are somewhat analogous
to absorption and emission of vacancies and interstitials by dislocations (al-
lowing dislocations to climb), a phenomenon well-known in flat space.

We next catalog the dependence of the final state on the initial location
of the interstitial. The distinct initial conditions shown in Fig. 1 lead to
three different final annealed states, as summarized in Table 2. We have
checked that all other possible initial conditions, not indexed in Fig. 1, also
produce one of the listed final states. The final state with three mini-scars
of the form 5-7-5 has the lowest energy of all final states and provides a
measure of E∗

annealed.
It is also informative to track the position dependence of the interstitial
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initial location Eannealed annealed state

C, C’, 7, 8, 10 9.60570 ×108 3 scars (5-7-5)
0, 2, 3, 4, 6, 9 9.61011 ×108 2 scars (5-7-5)

1, 5 9.61062 ×108 2 scars (5-7-5-7-5)

Table 2: The three classes of final annealed state depending on the initial
interstitial location. The relaxed energies are measured for the power law
potential s = 6. Here Eannealed with 3 scars corresponds to E∗

annealed.

energy after it relaxes. Numerical measurements of local relaxed energy for
the interstitial as a function of initial location are presented in Table 3. We
note that, in most cases, the initial I3 complexion undergoes transitions to
more stable interstitial configurations, except the configuration that starts
from the very center location C in Fig. 1. For the initial conditions, C, C ′,
0, and 3, I3 is the most stable. We also note that the interstitial created
at the exact center C has the lowest defect energy, while one nearest to the
disclination from the location 10 requires the largest energy for interstitial
defect formation.

n transition Elocal of I3 Elocal − E∗
annealed

C I3 9.62182 ×108 0.01612 ×108

C’ I3 → I2 → I3 9.62195 ×108 0.01655 ×108

0 I3 → I4 → I3 9.62274 ×108 0.01708 ×108

1 I3 → I2 9.62391 ×108 0.01820 ×108

2 I3 → I2 9.62296 ×108 0.01725 ×108

3 I3 9.62269 ×108 0.01698 ×108

4 I3 → I2 9.62595 ×108 0.02025 ×108

5 I3 → I2 9.62479 ×108 0.01909 ×108

6 I3 → I2 9.62420 ×108 0.01849 ×108

7 I3 → I2 9.62350 ×108 0.01780 ×108

8 I3 → I4 9.62494 ×108 0.01924 ×108

9 I3 → I2 9.62526 ×108 0.01956 ×108

10 I3 → I4 9.62608 ×108 0.02037 ×108

Table 3: The energy of interstitial defects created at different initial posi-
tions within the spherical crystal. The energies shown are for a power law
potential with s = 6
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5 Continuum elastic theory calculations

In this section we study interstitials analytically using continuum elastic
theory on the sphere. Depending on where we create interstitials within a
spherical crystal, we have seen that they lead to different annealed states.
One can also understand such position dependency of interstitial defects by
calculating the elastic interaction energy of, for example, the threefold sym-
metric interstitial I3 with the embedded 12 disclinations. Here, we model
an interstitial by a compact 5-7-5-7-5-7 “ring” structure before the fraction-
ization of the bound dislocations into three isolated 5-7 dislocations. If x

represents a coordinate system within the sphere, the stress field associ-
ated with such configuration is determined by the bi-harmonic equation of a
sphere in terms of the Airy stress function χ(x), whose sources are the defect
density of disclinations SD(x), the defect density of interstitials SI(x), and
the Gaussian curvature K(x) of the background crystal,

1

Y
∆2χ(x) = SD(x) + SI(x) − K(x) , (5)

where Y is the two-dimensional Young’s modulus [9]. The defect densi-
ties of disclinations and interstitials on a curved crystalline background are,
respectively, written as

SD(x) =
π

3
√

g(x)

N
∑

α=1

qαδ(x − xα) , (6)

and

SI(x) =
1

2
√

g(x)

N
∑

β=1

Ωβ∆δ(x − xβ) , (7)

where g(x) is the determinant of the metric tensor of the sphere, qα is
the disclination charge, and Ωβ is the local area change caused by adding
an interstitial [26]. For 5- and 7-fold disclinations, we have qα = +1 and
qα = −1, respectively. The elastic free energy in terms of χ(x) is given by

F =
1

Y

∫

dA(∆χ(x))2 , (8)

with the area element dA = d2x
√

g(x). The interaction energy for a distri-
bution of two different kinds of defects located at positions {xα} and {xβ},
is then obtained from [9]

U(xα,xβ) = Y

∫

dAxSD(x)

∫

dAy

1

∆2
xy

SI(y) . (9)
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By substituting Eqs. (6) and (7) into Eq. (10) and integrating by parts, the
resulting elastic interaction of interstitials at position (θβ, φβ), with disclina-
tions at position (θα, φα) lying in the spherical crystalline background, then
reduces to

U(θα, φα; θβ, φβ) =
Y π

6

∑

α,β

qαΩβ ∆χ(θα, φα; θβ, φβ) . (10)

Here, the interstitial-disclination interaction potential is given by

∆χ(γ) =
1

4π

[

− ln

(

1 − cos γ

2

)

− 1

]

, (11)

with the angular geodesic distance, γ, between points (θα, φα) and (θβ, φβ),
given by

cos γ = cos θα cos θβ + sin θα sin θβ cos(φα − φβ) . (12)

We note that this interaction depends logarithmically on distance for small
γ, and corresponds to a repulsive interaction when both qα and Ωβ are
positive, as is the case for a 5-fold disclination interacting with an interstitial.
We expect that similar results hold in flat space.

To understand the results for a spherical geometry in more detail, we
first plot the contribution to the elastic potential energy Eq. (10) of a single
interstitial as well as a single vacancy versus the angular distance γ to a
single 5-fold disclination with the topological charge q = +1 (see Fig 6).
We assume that the magnitudes of the area change Ω are the same for
both defects. The sign of Ω can be determined by comparison with the
numerical results. Ω > 0 corresponds to the interstitial, while Ω < 0 to the
vacancy [26]. The calculation indicates that the elastic deformation energy
associated with the nucleation of an interstitial falls off with the angular
distance from the disclination, whereas the elastic interaction of a vacancy
grows with distance. Thus interstitials are repelled by a 5-fold disclination
(similar to the discussion of the small γ limit above), whereas vacancies
are attracted. Conversely, our calculations suggest that interstitials are at-
tracted to the cores of 7-fold disclinations while vacancies are repelled. This
is of interest in constructing ground states on negatively-curved (hyperbolic)
spaces. As noted, however, interstitials or vacancies typically break up when
subjected to interactions with multiple disclinations.

We now calculate the energy of an interstitial interacting with all twelve
disclinations of the spherical crystal in order to compare this continuum pre-
diction to our numerical results. We first create interstitials at various loca-
tions with snapshots displayed in Fig. 7. Note that the configurations whose
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Figure 6: The elastic interaction energies of an interstitial and a vacancy
with a single disclination, U(γ), are plotted in the unit of Y |Ω|.

energies are measured arise from distinct creations of interstitials rather than
from snapshots of the evolution of a single interstitial. In Fig. 7(a) we show
the configuration resulting from adding a particle at the very center of the
spherical triangle (initial position C). The effect of shifting the location of
the nucleated interstitial off the center towards the isolated disclination at
the bottom left is shown in Figs. 7(b) through (e). Finally Fig. 7(f) illus-
trates the case of creation immediately adjacent to the disclination. For each
nucleation of an interstitial we obtain the relaxed energy Elocal after local

relaxation immediately prior to unbinding into individual dislocations (frac-
tionization). The numerical results are scaled (this amounts to taking the
product of the Young’s modulus Y and the extra area Ω of the interstitial
as a fitting parameter) to compare with the analytic calculation discussed
below and presented, with error bars, in Fig. 8.

For each configuration in Fig. 7, the continuum elastic potential ener-
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Figure 7: Snapshots of interstitials created at various locations relative to
neighboring disclinations. As indicated in part (a), the disclination at the
top vertex is located at the north pole, (0, 0), while those at the bottom
left and right are at polar angles (cos−1(1/

√
5), 0) and (cos−1(1/

√
5, 2π/5),

respectively. The locations of the center of each interstitial, (θI , φI), are
approximately estimated using spherical trigonometry: (a) (0.65, π/5) (b)
(0.60, 0.54) (c) (0.63, 0.33) (d) (0.65, 0) (e) (0.77, 0) (f) (0.97, 0.21), where
all angles are in radians.
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Figure 8: For the selected locations of interstitials within the (8, 3) lattice in
Fig. 7, the elastic interaction energy of an interstitial with all twelve disclina-
tions is plotted in the units of Y Ω, with interstitial locations a− f arranged
in order of increasing γ. The circles with error bars represent numerically
measured results which are re-scaled to fit the analytic calculations.

gies including all 12 disclinations can be obtained by inserting the known
spherical coordinates of the disclinations. For the twelve vertices of the
icosahedron, we choose the following explicit coordinates,

(θ, φ) ≡
{

(0, 0),

(

δ,
2πk

5

)

0≤k≤4

,

(

π − δ,
π

5
+

2πk

5

)

0≤k≤4

, (π, 0)

}

, (13)

where δ = cos−1(1/
√

5) ≈ 1.107 radian. The first 6 vertices lie in the
northern hemisphere and the remaining 6 in the southern hemisphere. The
location of the center of the interstitial is estimated by a simple counting of
lattice spacings together with spherical trigonometry: cos c = cos a cos b +
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sin a sin b cos C, where a, b, and c are the angular lengths of the sides of the
spherical triangle, and C is the angle of the triangle that faces the side c.
The coordinates so obtained are given in the caption of Fig. 7. The result-
ing total elastic coupling energies of the interstitials with all disclinations,
corresponding to the configurations in Fig. 7, are plotted together with the
numerical results in Fig. 8. As can be seen, there is reasonable agreement
between our numerical results and continuum elastic theory on the sphere.

6 Vicinity of the magic number

Icosadeltahedral configurations of magic numbers Nnm of particles on the
sphere are believed to be good approximations to ground states for relatively
small numbers of particles, say N . 300, interacting via a Coulomb poten-
tial [27]. In this section we investigate the role of interstitials and vacancies
on the energetics of N particles in the vicinity of the magic numbers Nnm.

The energy of the system of particles interacting with a power-law poten-
tial Eq. (2) can be expressed as an expansion in powers of the total number
of particles N , for 0 < s < 2,

2ETOT (N) =

[

N2

2s−1(2 − s)
− a1N

1+
s

2 + O(N s/2)

]

e2

Rs
, (14)

where the coefficient a1 is a term determined by the geometry and the mi-
croscopic potential [10, 11]. We will choose units such that e2/Rs is unity for
our purposes here. For s > 2, the first term in Eq. (14), which arises from
long-range interactions, is missing. The coefficient a1 may be obtained by
calculating the correction to the zero mode energy associated with a partic-
ular defect configuration via the continuum elastic model [11], or by fitting
the energy from exact minimizations with the function Eq. (14) [28].

To study the total energy in the vicinity of the magic number Nnm, it
is useful to compare the relaxed energies of particle numbers N = Nnm ± t
along with the inserted interstitial or vacancy defects t, to the expression
Eq. (14) in terms of N . For this comparison, we use

Efitted =
1

2
(N2 − 1.10494N3/2) , (15)

where a1 was obtained from the icosahedral configuration of twelve 5-fold
disclinations with s = 1 [11]. Although this value of a1 is an approximate
continuum result, the value above provides a smoothly varying background
energy Efitted(N) useful for our purposes.
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Figure 9: We plot the difference between the numerically fitted energy and
the annealed energy with interstitials and vacancies in the vicinity of the
icosadeltahedral configurations with magic numbers 932, 972, and 72 (inset)
for the case of Coulomb interactions, s = 1. The total particle numbers are
thus Nnm + t, where the integer t is given in parentheses above each data
point. Note that E is dimensionless in our units for this section.

In Fig. 9, we plot E∗
annealed−Efitted in the vicinity of the (8, 3) icosadelta-

hedral lattice with N83 = 972, (7, 4) with N74 = 932, and (2, 1) with
N21 = 72, where E∗

annealed is the lowest annealed energy we found for incom-
mensurate particle numbers created initially by inserting interstitials or va-
cancies. For large N , such as 932 and 972, we find that the icosadeltahedral
configuration is a local maximum rather than a local minimum. Inserting
interstitials (or vacancies) lowers the energy. Presumably, this lowering of
the total energy arises because, as we have shown, vacancies and intersti-
tials facilitate formation of grain boundary scars, favored for N & 300. For
relatively small numbers of particles, on the other hand, such as N = 72,
the icosadeltahedral configuration is a local minimum, consistent with ex-
pectations for N . 300 [9]. Somewhat similar results near special numbers
of capsids were found in a minimal model for the equilibrium energy of viral
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capsids using Monte Carlo simulations [13].
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