692 research outputs found

    Quantum Singularities in Static Spacetimes

    Full text link
    We review the mathematical framework necessary to understand the physical content of quantum singularities in static spacetimes. We present many examples of classical singular spacetimes and study their singularities by using wave packets satisfying Klein-Gordon and Dirac equations. We show that in many cases the classical singularities are excluded when tested by quantum particles but unfortunately there are other cases where the singularities remain from the quantum mechanical point of view. When it is possible we also find, for spacetimes where quantum mechanics does not exclude the singularities, the boundary conditions necessary to turn the spatial portion of the wave operator into self-adjoint and emphasize their importance to the interpretation of quantum singularities.Comment: 14 pages, section Quantum Singularities has been improve

    Chaos and Rotating Black Holes with Halos

    Get PDF
    The occurrence of chaos for test particles moving around a slowly rotating black hole with a dipolar halo is studied using Poincar\'e sections. We find a novel effect, particles with angular momentum opposite to the black hole rotation have larger chaotic regions in phase space than particles initially moving in the same direction.Comment: 9 pages, 4 Postscript figures. Phys. Rev. D, in pres

    Acceleration, streamlines and potential flows in general relativity: analytical and numerical results

    Full text link
    Analytical and numerical solutions for the integral curves of the velocity field (streamlines) of a steady-state flow of an ideal fluid with p=ρp = \rho equation of state are presented. The streamlines associated with an accelerate black hole and a rigid sphere are studied in some detail, as well as, the velocity fields of a black hole and a rigid sphere in an external dipolar field (constant acceleration field). In the latter case the dipole field is produced by an axially symmetric halo or shell of matter. For each case the fluid density is studied using contour lines. We found that the presence of acceleration is detected by these contour lines. As far as we know this is the first time that the integral curves of the velocity field for accelerate objects and related spacetimes are studied in general relativity.Comment: RevTex, 14 pages, 7 eps figs, CQG to appea

    Spacetime Defects: von K\'arm\'an vortex street like configurations

    Get PDF
    A special arrangement of spinning strings with dislocations similar to a von K\'arm\'an vortex street is studied. We numerically solve the geodesic equations for the special case of a test particle moving along twoinfinite rows of pure dislocations and also discuss the case of pure spinning defects.Comment: 9 pages, 2figures, CQG in pres

    Spinning Strings, Black Holes and Stable Closed Timelike Geodesics

    Full text link
    The existence and stability under linear perturbation of closed timelike curves in the spacetime associated to Schwarzschild black hole pierced by a spinning string are studied. Due to the superposition of the black hole, we find that the spinning string spacetime is deformed in such a way to allow the existence of closed timelike geodesics.Comment: 5 pages, RevTex4, some corrections and new material adde

    Exact General Relativistic Disks with Magnetic Fields

    Get PDF
    The well-known ``displace, cut, and reflect'' method used to generate cold disks from given solutions of Einstein equations is extended to solutions of Einstein-Maxwell equations. Four exact solutions of the these last equations are used to construct models of hot disks with surface density, azimuthal pressure, and azimuthal current. The solutions are closely related to Kerr, Taub-NUT, Lynden-Bell-Pinault and to a one-soliton solution. We find that the presence of the magnetic field can change in a nontrivial way the different properties of the disks. In particular, the pure general relativistic instability studied by Bicak, Lynden-Bell and Katz [Phys. Rev. D47, 4334, 1993] can be enhanced or cured by different distributions of currents inside the disk. These currents, outside the disk, generate a variety of axial symmetric magnetic fields. As far as we know these are the first models of hot disks studied in the context of general relativity.Comment: 21 pages, 11 figures, uses package graphics, accepted in PR

    Rotating Relativistic Thin Disks

    Get PDF
    Two families of models of rotating relativistic disks based on Taub-NUT and Kerr metrics are constructed using the well-known "displace, cut and reflect" method. We find that for disks built from a generic stationary axially symmetric metric the "sound velocity", (pressure/density)1/2(pressure/density)^{1/2}, is equal to the geometric mean of the prograde and retrograde geodesic circular velocities of test particles moving on the disk. We also found that for generic disks we can have zones with heat flow. For the two families of models studied the boundaries that separate the zones with and without heat flow are not stable against radial perturbations (ring formation).Comment: 18 eps figures, to be published PR

    Domain Wall Spacetimes: Instability of Cosmological Event and Cauchy Horizons

    Get PDF
    The stability of cosmological event and Cauchy horizons of spacetimes associated with plane symmetric domain walls are studied. It is found that both horizons are not stable against perturbations of null fluids and massless scalar fields; they are turned into curvature singularities. These singularities are light-like and strong in the sense that both the tidal forces and distortions acting on test particles become unbounded when theses singularities are approached.Comment: Latex, 3 figures not included in the text but available upon reques

    A Dynamical Systems Approach to Schwarzschild Null Geodesics

    Full text link
    The null geodesics of a Schwarzschild black hole are studied from a dynamical systems perspective. Written in terms of Kerr-Schild coordinates, the null geodesic equation takes on the simple form of a particle moving under the influence of a Newtonian central force with an inverse-cubic potential. We apply a McGehee transformation to these equations, which clearly elucidates the full phase space of solutions. All the null geodesics belong to one of four families of invariant manifolds and their limiting cases, further characterized by the angular momentum L of the orbit: for |L|>|L_c|, (1) the set that flow outward from the white hole, turn around, then fall into the black hole, (2) the set that fall inward from past null infinity, turn around outside the black hole to continue to future null infinity, and for |L|<|L_c|, (3) the set that flow outward from the white hole and continue to future null infinity, (4) the set that flow inward from past null infinity and into the black hole. The critical angular momentum Lc corresponds to the unstable circular orbit at r=3M, and the homoclinic orbits associated with it. There are two additional critical points of the flow at the singularity at r=0. Though the solutions of geodesic motion and Hamiltonian flow we describe here are well known, what we believe is a novel aspect of this work is the mapping between the two equivalent descriptions, and the different insights each approach can give to the problem. For example, the McGehee picture points to a particularly interesting limiting case of the class (1) that move from the white to black hole: in the limit as L goes to infinity, as described in Schwarzschild coordinates, these geodesics begin at r=0, flow along t=constant lines, turn around at r=2M, then continue to r=0. During this motion they circle in azimuth exactly once, and complete the journey in zero affine time.Comment: 14 pages, 3 Figure
    corecore