1,047 research outputs found
Familial Recurrence of Cerebral Palsy with Multiple Risk Factors
The recurrence of cerebral palsy in the same family is uncommon. We, however, report on two families with two or more affected siblings. In both families, numerous potential risk factors were identified including environmental, obstetric, and possible maternal effects. We hypothesize that multiple risk factors may lead to the increased risk of recurrence of cerebral palsy in families. Intrinsic and maternal risk factors should be investigated in all cases of cerebral palsy to properly counsel families on the risk of recurrence. Recent studies of genetic polymorphisms associated with cerebral palsy are considered with reference to our observations in these two families
A Space-time Smooth Artificial Viscosity Method For Nonlinear Conservation Laws
We introduce a new methodology for adding localized, space-time smooth,
artificial viscosity to nonlinear systems of conservation laws which propagate
shock waves, rarefactions, and contact discontinuities, which we call the
-method. We shall focus our attention on the compressible Euler equations in
one space dimension. The novel feature of our approach involves the coupling of
a linear scalar reaction-diffusion equation to our system of conservation laws,
whose solution is the coefficient to an additional (and artificial)
term added to the flux, which determines the location, localization, and
strength of the artificial viscosity. Near shock discontinuities, is
large and localized, and transitions smoothly in space-time to zero away from
discontinuities. Our approach is a provably convergent, spacetime-regularized
variant of the original idea of Richtmeyer and Von Neumann, and is provided at
the level of the PDE, thus allowing a host of numerical discretization schemes
to be employed. We demonstrate the effectiveness of the -method with three
different numerical implementations and apply these to a collection of
classical problems: the Sod shock-tube, the Osher-Shu shock-tube, the
Woodward-Colella blast wave and the Leblanc shock-tube. First, we use a
classical continuous finite-element implementation using second-order
discretization in both space and time, FEM-C. Second, we use a simplified WENO
scheme within our -method framework, WENO-C. Third, we use WENO with the
Lax-Friedrichs flux together with the -equation, and call this WENO-LF-C.
All three schemes yield higher-order discretization strategies, which provide
sharp shock resolution with minimal overshoot and noise, and compare well with
higher-order WENO schemes that employ approximate Riemann solvers,
outperforming them for the difficult Leblanc shock tube experiment.Comment: 34 pages, 27 figure
Meeting report : GBIF hackathon-workshop on Darwin Core and sample data (22-24 May 2013)
© The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Standards in Genomic Sciences 9 (2014): 585-598, doi:10.4056/sigs.4898640.The workshop-hackathon was convened by the Global Biodiversity Information Facility (GBIF) at its secretariat in Copenhagen over 22-24 May 2013 with additional support from several projects (RCN4GSC, EAGER, VertNet, BiSciCol, GGBN, and Micro B3). It assembled a team of experts to address the challenge of adapting the Darwin Core standard for a wide variety of sample data. Topics addressed in the workshop included 1) a review of outstanding issues in the Darwin Core standard, 2) issues relating to publishing of biodiversity data through Darwin Core Archives, 3) use of Darwin Core Archives for publishing sample and monitoring data, 4) the case for modifying the Darwin Core Text Guide specification to support many-to-many relations, and 5) the generalization of the Darwin Core Archive to a “Biodiversity Data Archive”. A wide variety of use cases were assembled and discussed in order to inform further developments.We gratefully acknowledge support from the Global Biodiversity Information Facility (GBIF), from the Global Genome Biodiversity Network (GGBN), from the EU 7FP Biodiversity, Bioinformatics, Biotechnology project (Micro B3), and from the US National Science Foundation (NSF) through the following grants: DBI-0840989 [Research Coordination Network for the Ge-nomic Standards Consortium (RCN4GSC)], IIS-1255035 [EAGER: An Interoperable Information Infrastructure for Biodiversity Research (I3BR)], ABI Development: Collaborative Research: VertNet, a New Model for Bio-diversity Networks (DBI-1062193), and Collaborative Research: BiSciCol Tracker: Towards a tagging and tracking infrastructure for biodiversity science collec-tions (DBI-0956426)
Meeting Report: GBIF hackathon-workshop on Darwin Core and sample data (22-24 May 2013)
This is the published version, also available at http://dx.doi.org/10.4056/sigs.4898640.The workshop-hackathon was convened by the Global Biodiversity Information Facility (GBIF) at its secretariat in Copenhagen over 22-24 May 2013 with additional support from several projects (RCN4GSC, EAGER, VertNet, BiSciCol, GGBN, and Micro B3). It assembled a team of experts to address the challenge of adapting the Darwin Core standard for a wide variety of sample data. Topics addressed in the workshop included 1) a review of outstanding issues in the Darwin Core standard, 2) issues relating to publishing of biodiversity data through Darwin Core Archives, 3) use of Darwin Core Archives for publishing sample and monitoring data, 4) the case for modifying the Darwin Core Text Guide specification to support many-to-many relations, and 5) the generalization of the Darwin Core Archive to a “Biodiversity Data Archive”. A wide variety of use cases were assembled and discussed in order to inform further developments
Meeting Report: GBIF hackathon-workshop on Darwin Core and sample data (22-24 May 2013)
This is the published version, also available at http://dx.doi.org/10.4056/sigs.4898640.The workshop-hackathon was convened by the Global Biodiversity Information Facility (GBIF) at its secretariat in Copenhagen over 22-24 May 2013 with additional support from several projects (RCN4GSC, EAGER, VertNet, BiSciCol, GGBN, and Micro B3). It assembled a team of experts to address the challenge of adapting the Darwin Core standard for a wide variety of sample data. Topics addressed in the workshop included 1) a review of outstanding issues in the Darwin Core standard, 2) issues relating to publishing of biodiversity data through Darwin Core Archives, 3) use of Darwin Core Archives for publishing sample and monitoring data, 4) the case for modifying the Darwin Core Text Guide specification to support many-to-many relations, and 5) the generalization of the Darwin Core Archive to a “Biodiversity Data Archive”. A wide variety of use cases were assembled and discussed in order to inform further developments
Meeting Report: GBIF hackathon-workshop on Darwin Core and sample data (22-24 May 2013)
This is the published version, also available at http://dx.doi.org/10.4056/sigs.4898640.The workshop-hackathon was convened by the Global Biodiversity Information Facility (GBIF) at its secretariat in Copenhagen over 22-24 May 2013 with additional support from several projects (RCN4GSC, EAGER, VertNet, BiSciCol, GGBN, and Micro B3). It assembled a team of experts to address the challenge of adapting the Darwin Core standard for a wide variety of sample data. Topics addressed in the workshop included 1) a review of outstanding issues in the Darwin Core standard, 2) issues relating to publishing of biodiversity data through Darwin Core Archives, 3) use of Darwin Core Archives for publishing sample and monitoring data, 4) the case for modifying the Darwin Core Text Guide specification to support many-to-many relations, and 5) the generalization of the Darwin Core Archive to a “Biodiversity Data Archive”. A wide variety of use cases were assembled and discussed in order to inform further developments
Meeting Report: GBIF hackathon-workshop on Darwin Core and sample data (22-24 May 2013)
This is the published version, also available at http://dx.doi.org/10.4056/sigs.4898640.The workshop-hackathon was convened by the Global Biodiversity Information Facility (GBIF) at its secretariat in Copenhagen over 22-24 May 2013 with additional support from several projects (RCN4GSC, EAGER, VertNet, BiSciCol, GGBN, and Micro B3). It assembled a team of experts to address the challenge of adapting the Darwin Core standard for a wide variety of sample data. Topics addressed in the workshop included 1) a review of outstanding issues in the Darwin Core standard, 2) issues relating to publishing of biodiversity data through Darwin Core Archives, 3) use of Darwin Core Archives for publishing sample and monitoring data, 4) the case for modifying the Darwin Core Text Guide specification to support many-to-many relations, and 5) the generalization of the Darwin Core Archive to a “Biodiversity Data Archive”. A wide variety of use cases were assembled and discussed in order to inform further developments
Meeting Report: GBIF hackathon-workshop on Darwin Core and sample data (22-24 May 2013)
This is the published version, also available at http://dx.doi.org/10.4056/sigs.4898640.The workshop-hackathon was convened by the Global Biodiversity Information Facility (GBIF) at its secretariat in Copenhagen over 22-24 May 2013 with additional support from several projects (RCN4GSC, EAGER, VertNet, BiSciCol, GGBN, and Micro B3). It assembled a team of experts to address the challenge of adapting the Darwin Core standard for a wide variety of sample data. Topics addressed in the workshop included 1) a review of outstanding issues in the Darwin Core standard, 2) issues relating to publishing of biodiversity data through Darwin Core Archives, 3) use of Darwin Core Archives for publishing sample and monitoring data, 4) the case for modifying the Darwin Core Text Guide specification to support many-to-many relations, and 5) the generalization of the Darwin Core Archive to a “Biodiversity Data Archive”. A wide variety of use cases were assembled and discussed in order to inform further developments
Generating operative workflows for vestibular schwannoma resection: a two-stage Delphi consensus in collaboration with British Skull Base Society. Part 1: the retrosigmoid approach
Objective: An operative workflow systematically compartmentalises operations into hierarchal components of phases, steps, instrument, technique errors and event errors. Operative workflow provides a foundation for education, training, and understanding of surgical variation. In Part 1 we present a codified operative workflow for the retrosigmoid approach to vestibular schwannoma resection. / Methods: A mixed-method consensus process of literature review, small group Delphi consensus, followed by a national Delphi consensus was performed in collaboration with British Skull Base Society (BSBS). Each Delphi round was repeated until data saturation and over 90% consensus was reached. / Results: Eighteen consultant skull base surgeons (10 neurosurgeons; 8 ENT) with median 17.9 years of experience (IQR 17.5 years) of independent practice participated. There was a 100% response rate across both Delphi rounds. The operative workflow for the retrosigmoid approach contained 3 phases and 40 unique steps: Phase 1: approach and exposure; Phase 2: tumour debulking and excision; Phase 3: closure. For the retrosigmoid approach, technique and event error for each operative step was also described. / Conclusions: We present Part 1 of a national, multi-centre, consensus-derived codified operative workflow for the retrosigmoid and approach to vestibular schwannomas that encompasses phases, steps, instruments, technique errors, and event errors. The codified retrosigmoid approach presented in this manuscript can serve as foundational research for future work, such as operative workflow analysis or neurosurgical simulation and education
Impact of facial conformation on canine health: Brachycephalic Obstructive Airway Syndrome
The domestic dog may be the most morphologically diverse terrestrial mammalian species known to man; pedigree dogs are artificially selected for extreme aesthetics dictated by formal Breed Standards, and breed-related disorders linked to conformation are ubiquitous and diverse. Brachycephaly–foreshortening of the facial skeleton–is a discrete mutation that has been selected for in many popular dog breeds e.g. the Bulldog, Pug, and French Bulldog. A chronic, debilitating respiratory syndrome, whereby soft tissue blocks the airways, predominantly affects dogs with this conformation, and thus is labelled Brachycephalic Obstructive Airway Syndrome (BOAS). Despite the name of the syndrome, scientific evidence quantitatively linking brachycephaly with BOAS is lacking, but it could aid efforts to select for healthier conformations. Here we show, in (1) an exploratory study of 700 dogs of diverse breeds and conformations, and (2) a confirmatory study of 154 brachycephalic dogs, that BOAS risk increases sharply in a non-linear manner as relative muzzle length shortens. BOAS only occurred in dogs whose muzzles comprised less than half their cranial lengths. Thicker neck girths also increased BOAS risk in both populations: a risk factor for human sleep apnoea and not previously realised in dogs; and obesity was found to further increase BOAS risk. This study provides evidence that breeding for brachycephaly leads to an increased risk of BOAS in dogs, with risk increasing as the morphology becomes more exaggerated. As such, dog breeders and buyers should be aware of this risk when selecting dogs, and breeding organisations should actively discourage exaggeration of this high-risk conformation in breed standards and the show ring
- …