32 research outputs found

    EPR studies of manganese centers in SrTiO3: Non-Kramers Mn3+ ions and spin-spin coupled Mn4+ dimers

    Full text link
    X- and Q-band electron paramagnetic resonance (EPR) study is reported on the SrTiO3 single crystals doped with 0.5-at.% MnO. EPR spectra originating from the S = 2 ground state of Mn3+ ions are shown to belong to the three distinct types of Jahn-Teller centres. The ordering of the oxygen vacancies due to the reduction treatment of the samples and consequent formation of oxygen vacancy associated Mn3+ centres are explained in terms of the localized charge compensation. The EPR spectra of SrTiO3: Mn crystals show the presence of next nearest neighbor exchange coupled Mn4+ pairs in the directions.Comment: 17 pages, 8 figure

    The spin relaxation of nitrogen donors in 6H SiC crystals as studied by the electron spin echo method

    Get PDF
    We present the detailed study of the spin kinetics of the nitrogen (N) donor electrons in 6H SiC wafers grown by the Lely method and by the sublimation “sandwich method” (SSM) with a donor concentration of about 10 17cm-3 at T=10–40K. The donor electrons of the N donors substituting quasi-cubic “k1” and “k2” sites (Nk1,k2) in both types of the samples revealed the similar temperature dependence of the spin-lattice relaxation rate (T1 -1), which was described by the direct one-phonon and two-phonon processes induced by the acoustic phonons proportional to T and to T9, respectively. The character of the temperature dependence of the T1 -1 for the donor electrons of N substituting hexagonal (“h”) site (Nh) in both types of 6H SiC samples indicates that the donor electrons relax through the fast-relaxing centers by means of the cross-relaxation process. The observed enhancement of the phase memory relaxation rate (Tm -1) with the temperature increase for the Nh donors in both types of the samples, as well as for the Nk1,k2 donors in Lely grown 6H SiC, was explained by the growth of the free electron concentration with the temperature increase and their exchange scattering at the N donor centers. The observed significant shortening of the phase memory relaxation time Tm for the Nk1,k2 donors in the SSM grown sample with the temperature lowering is caused by hopping motion of the electrons between the occupied and unoccupied states of the N donors at Nh and Nk1,k2 sites. The impact of the N donor pairs, triads, distant donor pairs formed in n-type 6H SiC wafers on the spin relaxation times was discussed

    Chiral plasmonic response of 2D Ti3C2Tx flakes: realization and applications

    Get PDF
    The circularly polarized light sensitive materials response can be reached at plasmon wavelengths through the coupling of intrinsically non-chiral plasmonic nanostructure with chiral organic molecules. As a plasmonic background, the different types of metal nanoparticles of various shapes and sizes are successfully tested and an apparent circular dichroism (CD) signal is measured in both, nanoparticles suspensions and after nanoparticle immobilization in substrate. In this work, the creation of plasmon-active 2D flakes of MXenes (Ti3C2Tx) is proposed, with the apparent CD response at plasmon wavelength, through the coupling of intrinsically non-chiral flakes with helically shaped helicene enantiomers. This work provides the first demonstration of chiral and plasmon-active 2D material, which shows the absorption sensitive to light intrinsic circular polarization even in plasmon wavelengths range. The appearance of the induced CD signal is additionally confirmed by several theoretical calculations. After the experimental and theoretical confirmation of the optical chirality at plasmon wavelengths, the flakes are utilized for the polarization sensitive conversion of light to heat, as well as for polarization dependent triggering of plasmon-assisted chemical transformation

    Diffractive and coloured films by laser interferometry patterning

    No full text
    Coloured coatings having both selective optical and diffractive properties have been produced by phase-mask laser interference with a UV laser beam (193 nm and 20 ns pulse duration). The method has been demonstrated on Ag films prepared by magnetron sputtering having equivalent thickness ranging from nearly isolated nanoparticles to continuous film. The laser induces periodic patterns formed by non-transformed film areas surrounded by areas containing nanoparticles whose dimensions are controlled through the as-grown film thickness. The nanoparticles are found responsible for a reflectivity band peaking in the range 446Âż545 nm depending on the thickness and associated to their surface plasmon resonance that provides the ÂżcolourÂż. The morphology of the pattern can be controlled through the laser energy, number of pulses and the phase-mask configuration and has a unique diffraction pattern associated. This approach allows producing customised coloured coatings with an identification feature. Although the concept is shown for a silver film and rectangular patterns, it can easily be extended to many other types of materials or patterns.This work has partially been supported by the joint 2008CZ0018 project between CSIC (Spain) and ASCR (Czech Republic). RP acknowledges a grant from the JAE-doc programme. MN's research was supported by project GACR GP202/09/P324. JB's research was supported by Grant Agency of Czech Academy of Sciences, project IAA100100718.Peer Reviewe

    Difractive and coloured films patterned by laser interferometry

    No full text
    Trabajo presentado en el E-MRS ICAM IUMRS 2011 Spring Meeting (Symposium K : Protective coatings and thin films), celebrado en Niza (Francia), del 9 al 13 de mayo de 201

    The spin relaxation of nitrogen donors in 6H SiC crystals as studied by the electron spin echo method

    No full text
    We present the detailed study of the spin kinetics of the nitrogen (N) donor electrons in 6H SiC wafers grown by the Lely method and by the sublimation “sandwich method” (SSM) with a donor concentration of about 10 17cm-3 at T=10–40K. The donor electrons of the N donors substituting quasi-cubic “k1” and “k2” sites (Nk1,k2) in both types of the samples revealed the similar temperature dependence of the spin-lattice relaxation rate (T1 -1), which was described by the direct one-phonon and two-phonon processes induced by the acoustic phonons proportional to T and to T9, respectively. The character of the temperature dependence of the T1 -1 for the donor electrons of N substituting hexagonal (“h”) site (Nh) in both types of 6H SiC samples indicates that the donor electrons relax through the fast-relaxing centers by means of the cross-relaxation process. The observed enhancement of the phase memory relaxation rate (Tm -1) with the temperature increase for the Nh donors in both types of the samples, as well as for the Nk1,k2 donors in Lely grown 6H SiC, was explained by the growth of the free electron concentration with the temperature increase and their exchange scattering at the N donor centers. The observed significant shortening of the phase memory relaxation time Tm for the Nk1,k2 donors in the SSM grown sample with the temperature lowering is caused by hopping motion of the electrons between the occupied and unoccupied states of the N donors at Nh and Nk1,k2 sites. The impact of the N donor pairs, triads, distant donor pairs formed in n-type 6H SiC wafers on the spin relaxation times was discussed

    2D plasmonic and diffractive structures with sharp features by UV laser patterning

    No full text
    The aim of this work is to produce 2D plasmonic and diffractive structures in Ag films with sharp features for which both a deeper understanding of laser induced transformation upon modulated laser intensity and a correlation between structural and optical properties are required. We compare results obtained by exposing silver films to an excimer laser operating at 193 nm whose intensity is either modulated or homogeneous. In all cases, one laser exposure is enough to break the film into nanoparticles (NPs). The use of the modulated beam intensity leads to diffractive 2D patterns that are formed by rectangular regions of untransformed material surrounded by transformed regions covered by NPs. The former have sharp edges that are consistent with the absence of significant mass transport that is discussed in terms of the thermal gradient induced. The latter contain NPs whose diameter increases as the initial film effective thickness increases. The surface plasmons associated with the NPs in the transformed regions dominate the reflectivity spectrum and the 2D array formed by the untransformed regions is responsible for the diffractive properties. Evidence for spinodal dewetting is only observed in our case for the steep gradient conditions achieved at the border of the homogeneously irradiated regions. © 2013 IOP Publishing Ltd.This work has been partially supported by MAT2011-28345- C02-02 (Spain). RP acknowledges a grant from the JAE doc program co-funded by the European Social Fund. JB acknowledges a project IAA100100718 of the Grant Agency of the Czech Academy of SciencesPeer Reviewe

    Ag based patterns produced by laser phase-mask interference

    No full text
    11th. International Conference on Laser Ablation, Playa del Carmen, MĂ©xico, November 13-19 2011N
    corecore