7,176 research outputs found

    Noncommutative Field Theory from Quantum Mechanical Space-Space Noncommutativity

    Full text link
    We investigate the incorporation of space noncommutativity into field theory by extending to the spectral continuum the minisuperspace action of the quantum mechanical harmonic oscillator propagator with an enlarged Heisenberg algebra. In addition to the usual \star-product deformation of the algebra of field functions, we show that the parameter of noncommutativity can occur in noncommutative field theory even in the case of free fields without self-interacting potentials.Comment: 13 page

    Inference with interference between units in an fMRI experiment of motor inhibition

    Full text link
    An experimental unit is an opportunity to randomly apply or withhold a treatment. There is interference between units if the application of the treatment to one unit may also affect other units. In cognitive neuroscience, a common form of experiment presents a sequence of stimuli or requests for cognitive activity at random to each experimental subject and measures biological aspects of brain activity that follow these requests. Each subject is then many experimental units, and interference between units within an experimental subject is likely, in part because the stimuli follow one another quickly and in part because human subjects learn or become experienced or primed or bored as the experiment proceeds. We use a recent fMRI experiment concerned with the inhibition of motor activity to illustrate and further develop recently proposed methodology for inference in the presence of interference. A simulation evaluates the power of competing procedures.Comment: Published by Journal of the American Statistical Association at http://www.tandfonline.com/doi/full/10.1080/01621459.2012.655954 . R package cin (Causal Inference for Neuroscience) implementing the proposed method is freely available on CRAN at https://CRAN.R-project.org/package=ci

    Baby-Step Giant-Step Algorithms for the Symmetric Group

    Full text link
    We study discrete logarithms in the setting of group actions. Suppose that GG is a group that acts on a set SS. When r,sSr,s \in S, a solution gGg \in G to rg=sr^g = s can be thought of as a kind of logarithm. In this paper, we study the case where G=SnG = S_n, and develop analogs to the Shanks baby-step / giant-step procedure for ordinary discrete logarithms. Specifically, we compute two sets A,BSnA, B \subseteq S_n such that every permutation of SnS_n can be written as a product abab of elements aAa \in A and bBb \in B. Our deterministic procedure is optimal up to constant factors, in the sense that AA and BB can be computed in optimal asymptotic complexity, and A|A| and B|B| are a small constant from n!\sqrt{n!} in size. We also analyze randomized "collision" algorithms for the same problem

    Space-Time Diffeomorphisms in Noncommutative Gauge Theories

    Get PDF
    In previous work [Rosenbaum M. et al., J. Phys. A: Math. Theor. 40 (2007), 10367-10382, hep-th/0611160] we have shown how for canonical parametrized field theories, where space-time is placed on the same footing as the other fields in the theory, the representation of space-time diffeomorphisms provides a very convenient scheme for analyzing the induced twisted deformation of these diffeomorphisms, as a result of the space-time noncommutativity. However, for gauge field theories (and of course also for canonical geometrodynamics) where the Poisson brackets of the constraints explicitely depend on the embedding variables, this Poisson algebra cannot be connected directly with a representation of the complete Lie algebra of space-time diffeomorphisms, because not all the field variables turn out to have a dynamical character [Isham C.J., Kuchar K.V., Ann. Physics 164 (1985), 288-315, 316-333]. Nonetheless, such an homomorphic mapping can be recuperated by first modifying the original action and then adding additional constraints in the formalism in order to retrieve the original theory, as shown by Kuchar and Stone for the case of the parametrized Maxwell field in [Kuchar K.V., Stone S.L., Classical Quantum Gravity 4 (1987), 319-328]. Making use of a combination of all of these ideas, we are therefore able to apply our canonical reparametrization approach in order to derive the deformed Lie algebra of the noncommutative space-time diffeomorphisms as well as to consider how gauge transformations act on the twisted algebras of gauge and particle fields. Thus, hopefully, adding clarification on some outstanding issues in the literature concerning the symmetries for gauge theories in noncommutative space-times.Comment: This is a contribution to the Special Issue on Deformation Quantization, published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Conductivity of Metallic Si:B near the Metal-Insulator Transition: Comparison between Unstressed and Uniaxially Stressed Samples

    Full text link
    The low-temperature dc conductivities of barely metallic samples of p-type Si:B are compared for a series of samples with different dopant concentrations, n, in the absence of stress (cubic symmetry), and for a single sample driven from the metallic into the insulating phase by uniaxial compression, S. For all values of temperature and stress, the conductivity of the stressed sample collapses onto a single universal scaling curve. The scaling fit indicates that the conductivity of si:B is proportional to the square-root of T in the critical range. Our data yield a critical conductivity exponent of 1.6, considerably larger than the value reported in earlier experiments where the transition was crossed by varying the dopant concentration. The larger exponent is based on data in a narrow range of stress near the critical value within which scaling holds. We show explicitly that the temperature dependences of the conductivity of stressed and unstressed Si:B are different, suggesting that a direct comparison of the critical behavior and critical exponents for stress- tuned and concentration-tuned transitions may not be warranted

    IR Kuiper Belt Constraints

    Get PDF
    We compute the temperature and IR signal of particles of radius aa and albedo α\alpha at heliocentric distance RR, taking into account the emissivity effect, and give an interpolating formula for the result. We compare with analyses of COBE DIRBE data by others (including recent detection of the cosmic IR background) for various values of heliocentric distance, RR, particle radius, aa, and particle albedo, α\alpha. We then apply these results to a recently-developed picture of the Kuiper belt as a two-sector disk with a nearby, low-density sector (40<R<50-90 AU) and a more distant sector with a higher density. We consider the case in which passage through a molecular cloud essentially cleans the Solar System of dust. We apply a simple model of dust production by comet collisions and removal by the Poynting-Robertson effect to find limits on total and dust masses in the near and far sectors as a function of time since such a passage. Finally we compare Kuiper belt IR spectra for various parameter values.Comment: 34 pages, LaTeX, uses aasms4.sty, 11 PostScript figures not embedded. A number of substantive comments by a particularly thoughtful referee have been addresse

    Scaled penalization of Brownian motion with drift and the Brownian ascent

    Full text link
    We study a scaled version of a two-parameter Brownian penalization model introduced by Roynette-Vallois-Yor in arXiv:math/0511102. The original model penalizes Brownian motion with drift hRh\in\mathbb{R} by the weight process (exp(νSt):t0){\big(\exp(\nu S_t):t\geq 0\big)} where νR\nu\in\mathbb{R} and (St:t0)\big(S_t:t\geq 0\big) is the running maximum of the Brownian motion. It was shown there that the resulting penalized process exhibits three distinct phases corresponding to different regions of the (ν,h)(\nu,h)-plane. In this paper, we investigate the effect of penalizing the Brownian motion concurrently with scaling and identify the limit process. This extends a result of Roynette-Yor for the ν<0, h=0{\nu<0,~h=0} case to the whole parameter plane and reveals two additional "critical" phases occurring at the boundaries between the parameter regions. One of these novel phases is Brownian motion conditioned to end at its maximum, a process we call the Brownian ascent. We then relate the Brownian ascent to some well-known Brownian path fragments and to a random scaling transformation of Brownian motion recently studied by Rosenbaum-Yor.Comment: 32 pages; made additions to Section

    Mountain gorillas maintain strong affiliative biases for maternal siblings despite high male reproductive skew and extensive exposure to paternal kin

    Get PDF
    Evolutionary theories predict that sibling relationships will reflect a complex balance of cooperative and competitive dynamics. In most mammals, dispersal and death patterns mean that sibling relationships occur in a relatively narrow window during development and/or only with same-sex individuals. Besides humans, one notable exception is mountain gorillas, in which non-sex-biased dispersal, relatively stable group composition, and the long reproductive tenures of alpha males mean that animals routinely reside with both maternally and paternally related siblings, of the same and opposite sex, throughout their lives. Using nearly 40,000 hr of behavioral data collected over 14 years on 699 sibling and 1235 non-sibling pairs of wild mountain gorillas, we demonstrate that individuals have strong affiliative preferences for full and maternal siblings over paternal siblings or unrelated animals, consistent with an inability to discriminate paternal kin. Intriguingly, however, aggression data imply the opposite. Aggression rates were statistically indistinguishable among all types of dyads except one: in mixed-sex dyads, non-siblings engaged in substantially more aggression than siblings of any type. This pattern suggests mountain gorillas may be capable of distinguishing paternal kin but nonetheless choose not to affiliate with them over non-kin. We observe a preference for maternal kin in a species with a high reproductive skew (i.e. high relatedness certainty), even though low reproductive skew (i.e. low relatedness certainty) is believed to underlie such biases in other non-human primates. Our results call into question reasons for strong maternal kin biases when paternal kin are identifiable, familiar, and similarly likely to be long-term groupmates, and they may also suggest behavioral mismatches at play during a transitional period in mountain gorilla society

    Liability Protections for Emergency Volunteer Health Practitioners and Entities

    Get PDF
    Twenty-four states and D.C. have statutes that extend some level of immunity to groups and/or organizations providing charitable, emergency, or disaster relief services, although these laws varied greatly among states
    corecore