466 research outputs found

    A search for water maser emission toward obscured post-AGB star and planetary nebula candidates

    Full text link
    Water maser emission at 22 GHz is a useful probe to study the transition between the nearly spherical mass-loss in the AGB to a collimated one in the post-AGB phase. In their turn, collimated jets in the post-AGB phase could determine the shape of planetary nebulae (PNe) once photoionization starts. We intend to find new cases of post-AGB stars and PNe with water maser emission, including water fountains or water-maser-emitting PNe. We observed water maser emission in a sample of 133 objects, with a significant fraction being post-AGB and young PN candidate sources with strong obscuration. We detected this emission in 15 of them, of which seven are reported here for the first time. We identified three water fountain candidates: IRAS 17291-2147, with a total velocity spread of ~96 km/s in its water maser components and two sources (IRAS 17021-3109 and IRAS 17348-2906) that show water maser emission outside the velocity range covered by OH masers. We have also identified IRAS 17393-2727 as a possible new water-maser-emitting PN. The detection rate is higher in obscured objects (14%) than in those with optical counterparts (7%), consistent with previous results. Water maser emission seems to be common in objects that are bipolar in the near-IR (43% detection rate). The water maser spectra of water fountain candidates like IRAS 17291-2147 show significantly less maser components than others (e.g., IRAS 18113-2503). We speculate that most post-AGBs may show water maser emission with wide enough velocity spread (> 100 km/s) when observed with enough sensitivity and/or for long enough periods of time. Therefore, it may be necessary to single out a special group of "water fountains", probably defined by their high maser luminosities. We also suggest that the presence of both water and OH masers in a PN is a better tracer of its youth, rather than the presence of just one of these species.Comment: To be published in Astronomy & Astrophysics. 16 pages, 1 figure (spanning 5 pages). This version includes some minor language corrections and fixes some errors in Table

    Transitional dispersive scenarios driven by mesoscale flows on complex terrain under strong dry convective conditions

    Get PDF
    By experimentation and modelling, this paper analyses the atmospheric dispersion of the SO<sub>2</sub> emissions from a power plant on complex terrain under strong convective conditions, describing the main dispersion features as an ensemble of "stationary dispersive scenarios" and reformulating some "classical" dispersive concepts to deal with the systematically monitored summer dispersive scenarios in inland Spain. The results and discussions presented arise from a statistically representative study of the physical processes associated with the multimodal distribution of pollutants aloft and around a 343-m-tall chimney under strong dry convective conditions in the Iberian Peninsula. This paper analyses the importance of the identification and physical implications of transitional periods for air quality applications. The indetermination of a transversal plume to the preferred transport direction during these transitional periods implies a small (or null) physical significance of the classical definition of horizontal standard deviation of the concentration distribution

    Concatenated non-stationary dispersive scenarios on complex terrain under summer conditions

    No full text
    International audienceThe results and discussions presented in this paper arise from a statistically representative study of the physical processes associated with the multimodal distribution of pollutants aloft and around a 343-m-tall chimney under summer conditions in the Iberian Peninsula. The indetermination of a transversal plume to the preferred transport direction during transitional periods implies a small (or null) physical significance of the classical definition of horizontal standard deviation of the concentration distribution. By experimentation and modelling, this paper analyses the atmospheric dispersion of the SO2 emissions from a power plant on complex terrain, describing the main dispersion features as an ensemble of "stationary dispersive scenarios" and reformulating some "classical" dispersive concepts to deal with the systematically monitored summer dispersive scenarios in inland Spain

    A study of dispersion in complex terrain under winter conditions using high-resolution mesoscale and Lagrangian particle models

    Get PDF
    A mesoscale model (MM5), a dispersive Langrangian particle model (FLEXPART), and intensive meteorological and COrrelation SPECtrometer (COSPEC) measurements from a field campaign are used to examine the advection and turbulent diffusion patterns associated with interactions and forcings between topography, synoptic atmospheric flows and thermally-driven circulations. This study describes the atmospheric dispersion of emissions from a power plant with a 343-m tall chimney, situated on very complex terrain in the North-East of Spain, under winter conditions. During the field campaign, the plume was transported with low transversal dispersion and deformed essentially due to the effect of mechanical turbulence. The main surface impacts appeared at long distances from the emission source (more than 30 km). The results show that the coupled models (MM5 and FLEXPART) are able to predict the plume integral advection from the power plant on very complex terrain. Integral advection and turbulent dispersion are derived from the dispersive Lagrangian model output for three consecutive days so that a direct quantitative comparison has been made between the temporal evolution of the predicted three-dimensional dispersive conditions and the COSPEC measurements. Comparison between experimental and simulated transversal dispersion shows an index of agreement between 80% and 90%, within distance ranges from 6 to 33 km from the stack. Linked to the orographic features, the simulated plume impacts on the ground more than 30 km away from the stack, because of the lee waves simulated by MM5

    The importance of meteorological scales to forecast air pollution scenarios on coastal complex terrain

    Get PDF
    Some of the meteorological approaches commonly considered in urban air pollution models do not take into account the importance of the smaller scales in the meteorology of complex-terrain coastal sites. The aim of this work is to estimate the impact of using the proper meteorological scales when simulating the behaviour of the pollutant concentrations emitted in the lower layers over coastal complex terrain areas. The availability of experimental measurements of a power plant plume near the Castellón conurbation (on the Spanish Mediterranean coast) has allowed us to use this plume as a tracer of opportunity of the lower atmosphere to check the results of a simulation exercise using the RAMS mesoscale model coupled to the HYPACT particle model. The results obtained show that in a complex-terrain coastal site, because of the strong effect of the meteorological interactions between the different scales on the integral advection and the turbulent dispersion of pollutants, using an inadequate scale to solve the meteorology can result in a very big gap in the simulation of lower-layer pollutant behaviour at urban scales

    Burst detection in water networks using principal component anlysis

    Get PDF
    The following work presents a multivariate statistical technique applied to the control of water inflows into district metering areas (DMAs) of urban networks. This technique, called principal-component analysis (PCA), allows for a sensitive and quick analysis of the inflows into a DMA without hassling mathematical algorithms. The PCA technique simplifies the original set of flow rate data recorded by the supervisory control and data acquisition (SCADA) system, synthesizing the most significant information into a statistical model that is able to explain most of the behavior of the water distribution network. The PCA technique also allows for the establishment of control charts that help system operators in the identification of anomalous behaviors regarding water use, bursts, or illegal connections. The described technique has been proven to offer high detection sensitivity to bursts or other unexpected consumptions.Palau Estevan, CV.; Arregui De La Cruz, F.; Carlos Alberola, MDM. (2012). Burst detection in water networks using principal component anlysis. Journal of Water Resources Planning and Management. 138(1):47-54. doi:10.1061/(ASCE)WR.1943-5452.0000147S4754138

    Satellite Observations of the Seasonal Evolution of Total Precipitable Water Vapour over the Mediterranean Sea

    Get PDF
    This study shows satellite observations and new findings on the time and spatial distribution of the Total Precipitable Water (TPW) column over the Mediterranean Sea throughout the year. Annual evolution and seasonality of the TPW column are shown and compared to the estimated net evaporation over the Mediterranean Sea. Daily spatiotemporal means are in good agreement with previous short-term field campaigns and also corroborate hypothesis and conclusions reached from previous mesoscale modelling studies: (a) from a meteorological point of view, Mediterranean Basin should be considered as two different subbasins (the Western and the Eastern Mediterranean); (b) accumulation processes may affect the radiative balance at regional scale and the summer precipitation regimes. Furthermore, these satellite observations constitute strong empirical evidences that, (a) from late May to early October, contrary to what happens in the Eastern Mediterranean Basin (EMB), there is a net accumulation of TPW on the Western Mediterranean Basin (WMB) that favours the instability of the atmosphere, (b) there is a seasonal anticorrelation between the seasonal variability of the TPW column over the two Mediterranean subbasins, (c) solar radiation can not be the only driver for the annual variability of the TPW column over the Mediterranean Sea, and (d) both previous features are seasonally dependent and, therefore, their effects on the TPW column are attenuated by annual variability

    A new kind of vortex pinning in superconductor / ferromagnet nanocomposites

    Full text link
    This paper reports the observation of hysteresis in the vortex pinning in a superconductor / ferromagnetic epitaxial nanocomposite consisting of fcc Gd particles incorporated in a Nb matrix. We show that this hysteretic pinning is associated with magnetic reversal losses in the Gd particles and is fundamentally different in origin to pinning interactions previously observed for ferromagnetic particles or other microstructural features.Comment: Submitted to PR
    corecore