5,476 research outputs found
Cluster and nebular properties of the central star-forming region of NGC 1140
We present new high spatial resolution HST/ACS imaging of NGC 1140 and high
spectral resolution VLT/UVES spectroscopy of its central star-forming region.
The central region contains several clusters, the two brightest of which are
clusters 1 and 6 from Hunter, O'Connell & Gallagher, located within
star-forming knots A and B, respectively. Nebular analysis indicates that the
knots have an LMC-like metallicity of 12 + log(O/H) = 8.29 +/- 0.09. According
to continuum subtracted H alpha ACS imaging, cluster 1 dominates the nebular
emission of the brighter knot A. Conversely, negligible nebular emission in
knot B originates from cluster 6. Evolutionary synthesis modelling implies an
age of 5 +/- 1 Myr for cluster 1, from which a photometric mass of (1.1 +/-
0.3) x 10^6 Msun is obtained. For this age and photometric mass, the modelling
predicts the presence of ~5900 late O stars within cluster 1. Wolf-Rayet
features are observed in knot A, suggesting 550 late-type WN and 200 early-type
WC stars. Therefore, N(WR)/N(O) ~ 0.1, assuming that all the WR stars are
located within cluster 1. The velocity dispersions of the clusters were
measured from constituent red supergiants as sigma ~ 23 +/- 1 km/s for cluster
1 and sigma ~ 26 +/- 1 km/s for cluster 6. Combining sigma with half-light
radii of 8 +/- 2 pc and 6.0 +/- 0.2 pc measured from the F625W ACS image
implies virial masses of (10 +/- 3) x 10^6 Msun and (9.1 +/- 0.8) x 10^6 Msun
for clusters 1 and 6, respectively. The most likely reason for the difference
between the dynamical and photometric masses of cluster 1 is that the velocity
dispersion of knot A is not due solely to cluster 1, as assumed, but has an
additional component associated with cluster 2.Comment: 13 pages, 7 figure
Model for web-application based configuration of modular production plants with automated PLC line control code generation
The international competition leads manufacturers in high-wage countries to focus more on high-value products, which often come at the disadvantage of small batch sizes. To remain competitive, the plant engineering for should be time and cost effective. One approach to achieve this are modular production lines. In the presented contribution, a product orientated web- service for the configuration of a modular production plant investigated. The resulting model then is interpreted by a code generator to generate a PLC line control. The approach is validated with a plant of metal hybrid carbon fiber seat rests
Two Approaches to Dislocation Nucleation in the Supported Heteroepitaxial Equilibrium Islanding Phenomenon
We study the dislocation formation in 2D nanoscopic islands with two methods,
the Molecular Static method and the Phase Field Crystal method. It is found
that both methods indicate the same qualitative stages of the nucleation
process. The dislocations nucleate at the film-substrate contact point and the
energy decreases monotonously when the dislocations are farther away from the
island-wetting film contact points than the distance of the highest energy
barrier.Comment: 4 page
Novel Slurry Solutions for Thick Cu CMP
Electro-plating methods currently used to deposit Cu in through-wafer interconnect applications result in the formation of a thick Cu layer with large amounts of topographical variation. In this paper, alternative methods for thick Cu removal are investigated using a two-step slurry CMP approach
The Incidence of Arterial Stent Fractures with Exclusion of Coronary, Aortic, and Non-arterial Settings
Background: This study aimed to review the literature regarding fracture of arterial stents, especially its relation to location of placement, clinical relevance, and type of stents. Material and methods: We searched published articles in PubMed up to February 2008 by using the terms: stent fracture or stent breakage. Results: Thirty-one articles met our inclusion and exclusion criteria. Most of the studies reported fractures in stents placed in the superficial femoral artery or popliteal arteries. The cumulative incidence of stent fractures ranged from 2% to 65%, i.e. 0.6 to 60 per 1000 person-months. Stent fractures occur more frequently in the superficial femoral artery and are common when multiple stents are deployed and overlap. Stent fractures are associated with a higher risk of in-stent restenosis and re-occlusion. Conclusion: The incidence of stent fracture, its location of placement, and type of stent used were diverse across studies. Stent fracture may cause clinical deterioration especially in the femoropopliteal segment, and it should be detected before clinical manifestation appears. Further studies with larger study population involving new type of stents for a longer follow up period are warranted.Peer reviewe
Hsp multichaperone complex buffers pathologically modified Tau
Alzheimer’s disease is a neurodegenerative disorder in which misfolding and aggregation of pathologically modified Tau is critical for neuronal dysfunction and degeneration. The two central chaperones Hsp70 and Hsp90 coordinate protein homeostasis, but the nature of the interaction of Tau with the Hsp70/Hsp90 machinery has remained enigmatic. Here we show that Tau is a high-affinity substrate of the human Hsp70/Hsp90 machinery. Complex formation involves extensive intermolecular contacts, blocks Tau aggregation and depends on Tau’s aggregation-prone repeat region. The Hsp90 co-chaperone p23 directly binds Tau and stabilizes the multichaperone/substrate complex, whereas the E3 ubiquitin-protein ligase CHIP efficiently disassembles the machinery targeting Tau to proteasomal degradation. Because phosphorylated Tau binds the Hsp70/Hsp90 machinery but is not recognized by Hsp90 alone, the data establish the Hsp70/Hsp90 multichaperone complex as a critical regulator of Tau in neurodegenerative diseases
Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5
Electronic nematics are exotic states of matter where electronic interactions
break a rotational symmetry of the underlying lattice, in analogy to the
directional alignment without translational order in nematic liquid crystals.
Intriguingly such phases appear in the copper- and iron-based superconductors,
and their role in establishing high-temperature superconductivity remains an
open question. Nematicity may take an active part, cooperating or competing
with superconductivity, or may appear accidentally in such systems. Here we
present experimental evidence for a phase of nematic character in the heavy
fermion superconductor CeRhIn5. We observe a field-induced breaking of the
electronic tetragonal symmetry of in the vicinity of an antiferromagnetic (AFM)
quantum phase transition at Hc~50T. This phase appears in out-of-plane fields
of H*~28T and is characterized by substantial in-plane resistivity anisotropy.
The anisotropy can be aligned by a small in-plane field component, with no
apparent connection to the underlying crystal structure. Furthermore no
anomalies are observed in the magnetic torque, suggesting the absence of
metamagnetic transitions in this field range. These observations are indicative
of an electronic nematic character of the high field state in CeRhIn5. The
appearance of nematic behavior in a phenotypical heavy fermion superconductor
highlights the interrelation of nematicity and unconventional
superconductivity, suggesting nematicity to be a commonality in such materials
- …