We present new high spatial resolution HST/ACS imaging of NGC 1140 and high
spectral resolution VLT/UVES spectroscopy of its central star-forming region.
The central region contains several clusters, the two brightest of which are
clusters 1 and 6 from Hunter, O'Connell & Gallagher, located within
star-forming knots A and B, respectively. Nebular analysis indicates that the
knots have an LMC-like metallicity of 12 + log(O/H) = 8.29 +/- 0.09. According
to continuum subtracted H alpha ACS imaging, cluster 1 dominates the nebular
emission of the brighter knot A. Conversely, negligible nebular emission in
knot B originates from cluster 6. Evolutionary synthesis modelling implies an
age of 5 +/- 1 Myr for cluster 1, from which a photometric mass of (1.1 +/-
0.3) x 10^6 Msun is obtained. For this age and photometric mass, the modelling
predicts the presence of ~5900 late O stars within cluster 1. Wolf-Rayet
features are observed in knot A, suggesting 550 late-type WN and 200 early-type
WC stars. Therefore, N(WR)/N(O) ~ 0.1, assuming that all the WR stars are
located within cluster 1. The velocity dispersions of the clusters were
measured from constituent red supergiants as sigma ~ 23 +/- 1 km/s for cluster
1 and sigma ~ 26 +/- 1 km/s for cluster 6. Combining sigma with half-light
radii of 8 +/- 2 pc and 6.0 +/- 0.2 pc measured from the F625W ACS image
implies virial masses of (10 +/- 3) x 10^6 Msun and (9.1 +/- 0.8) x 10^6 Msun
for clusters 1 and 6, respectively. The most likely reason for the difference
between the dynamical and photometric masses of cluster 1 is that the velocity
dispersion of knot A is not due solely to cluster 1, as assumed, but has an
additional component associated with cluster 2.Comment: 13 pages, 7 figure