96 research outputs found

    A rigidity theorem for nonvacuum initial data

    Get PDF
    In this note we prove a theorem on non-vacuum initial data for general relativity. The result presents a ``rigidity phenomenon'' for the extrinsic curvature, caused by the non-positive scalar curvature. More precisely, we state that in the case of asymptotically flat non-vacuum initial data if the metric has everywhere non-positive scalar curvature then the extrinsic curvature cannot be compactly supported.Comment: This is an extended and published version: LaTex, 10 pages, no figure

    A generalization of Hawking's black hole topology theorem to higher dimensions

    Full text link
    Hawking's theorem on the topology of black holes asserts that cross sections of the event horizon in 4-dimensional asymptotically flat stationary black hole spacetimes obeying the dominant energy condition are topologically 2-spheres. This conclusion extends to outer apparent horizons in spacetimes that are not necessarily stationary. In this paper we obtain a natural generalization of Hawking's results to higher dimensions by showing that cross sections of the event horizon (in the stationary case) and outer apparent horizons (in the general case) are of positive Yamabe type, i.e., admit metrics of positive scalar curvature. This implies many well-known restrictions on the topology, and is consistent with recent examples of five dimensional stationary black hole spacetimes with horizon topology S2×S1S^2 \times S^1. The proof is inspired by previous work of Schoen and Yau on the existence of solutions to the Jang equation (but does not make direct use of that equation).Comment: 8 pages, latex2e, references updated, minor corrections, to appear in Communications in Mathematical Physic

    Rotational symmetry of self-similar solutions to the Ricci flow

    Full text link
    Let (M,g) be a three-dimensional steady gradient Ricci soliton which is non-flat and \kappa-noncollapsed. We prove that (M,g) is isometric to the Bryant soliton up to scaling. This solves a problem mentioned in Perelman's first paper.Comment: Final version, to appear in Invent. Mat

    Initial Data for General Relativity Containing a Marginally Outer Trapped Torus

    Get PDF
    Asymptotically flat, time-symmetric, axially symmetric and conformally flat initial data for vacuum general relativity are studied numerically on R3R^3 with the interior of a standard torus cut out. By the choice of boundary condition the torus is marginally outer trapped, and thus a surface of minimal area. Apart from pure scaling the standard tori are parameterized by a radius a[0,1]a\in [0,1], where a=0a=0 corresponds to the limit where the boundary torus degenerates to a circle and a=1a=1 to a torus that touches the axis of symmetry. Noting that these tori are the orbits of a U(1)×U(1)U(1)\times U(1) conformal isometry allows for a simple scheme to solve the constraint, involving numerical solution of only ordinary differential equations.The tori are unstable minimal surfaces (i.e. only saddle points of the area functional) and thus can not be apparent horizons, but are always surrounded by an apparent horizon of spherical topology, which is analyzed in the context of the hoop conjecture and isoperimetric inequality for black holes.Comment: 12 pages, REVTeX 3.0, also available (with additional pictures and numerical data) from http://doppler.thp.univie.ac.at/~shusa/gr.htm

    Magnetic vortex filament flows

    Get PDF
    We exhibit a variational approach to study the magnetic flow associated with a Killing magnetic field in dimension 3. In this context, the solutions of the Lorentz force equation are viewed as Kirchhoff elastic rods and conversely. This provides an amazing connection between two apparently unrelated physical models and, in particular, it ties the classical elastic theory with the Hall effect. Then, these magnetic flows can be regarded as vortex filament flows within the localized induction approximation. The Hasimoto transformation can be used to see the magnetic trajectories as solutions of the cubic nonlinear Schrödinger equation showing the solitonic nature of those.Ministerio de Educación y CienciaFondo Europeo de Desarrollo RegionalJunta de Andalucí

    On the topology and area of higher dimensional black holes

    Get PDF
    Over the past decade there has been an increasing interest in the study of black holes, and related objects, in higher (and lower) dimensions, motivated to a large extent by developments in string theory. The aim of the present paper is to obtain higher dimensional analogues of some well known results for black holes in 3+1 dimensions. More precisely, we obtain extensions to higher dimensions of Hawking's black hole topology theorem for asymptotically flat (Λ=0\Lambda=0) black hole spacetimes, and Gibbons' and Woolgar's genus dependent, lower entropy bound for topological black holes in asymptotically locally anti-de Sitter (Λ<0\Lambda<0) spacetimes. In higher dimensions the genus is replaced by the so-called σ\sigma-constant, or Yamabe invariant, which is a fundamental topological invariant of smooth compact manifolds.Comment: 15 pages, Latex2e; typos corrected, a convention clarified, resulting in the simplification of certain formulas, other improvement

    Local and global behaviour of nonlinear equations with natural growth terms

    Full text link
    This paper concerns a study of the pointwise behaviour of positive solutions to certain quasi-linear elliptic equations with natural growth terms, under minimal regularity assumptions on the underlying coefficients. Our primary results consist of optimal pointwise estimates for positive solutions of such equations in terms of two local Wolff's potentials.Comment: In memory of Professor Nigel Kalto

    The Cauchy Problem for the Einstein Equations

    Get PDF
    Various aspects of the Cauchy problem for the Einstein equations are surveyed, with the emphasis on local solutions of the evolution equations. Particular attention is payed to giving a clear explanation of conceptual issues which arise in this context. The question of producing reduced systems of equations which are hyperbolic is examined in detail and some new results on that subject are presented. Relevant background from the theory of partial differential equations is also explained at some lengthComment: 98 page

    About curvature, conformal metrics and warped products

    Get PDF
    We consider the curvature of a family of warped products of two pseduo-Riemannian manifolds (B,gB)(B,g_B) and (F,gF)(F,g_F) furnished with metrics of the form c2gBw2gFc^{2}g_B \oplus w^2 g_F and, in particular, of the type w2μgBw2gFw^{2 \mu}g_B \oplus w^2 g_F, where c,w ⁣:B(0,)c, w \colon B \to (0,\infty) are smooth functions and μ\mu is a real parameter. We obtain suitable expressions for the Ricci tensor and scalar curvature of such products that allow us to establish results about the existence of Einstein or constant scalar curvature structures in these categories. If (B,gB)(B,g_B) is Riemannian, the latter question involves nonlinear elliptic partial differential equations with concave-convex nonlinearities and singular partial differential equations of the Lichnerowicz-York type among others.Comment: 32 pages, 3 figure

    Holographic Uniformization

    Full text link
    We derive and study supergravity BPS flow equations for M5 or D3 branes wrapping a Riemann surface. They take the form of novel geometric flows intrinsically defined on the surface. Their dual field-theoretic interpretation suggests the existence of solutions interpolating between an arbitrary metric in the UV and the constant-curvature metric in the IR. We confirm this conjecture with a rigorous global existence proof.Comment: 52 pages, 3 figure
    corecore