13,395 research outputs found
Thermal and stress analysis of an Attached Inflatable Decelerator /AID/ deployed in the Mars and Earth atmospheres
Trajectory, thermodynamic, and stress analyses of spacecraft inflatable decelerators in Mars and Earth atmosphere
On the Naturalness of Higgs Inflation
We critically examine the recent claim that the Standard Model Higgs boson
could drive inflation in agreement with observations if has a strong coupling to the Ricci curvature scalar. We
first show that the effective theory approach upon which that claim is based
ceases to be valid beyond a cutoff scale , where is the
reduced Planck mass. We then argue that knowing the Higgs potential profile for
the field values relevant for inflation () requires knowledge of the ultraviolet completion of the SM beyond
. In absence of such microscopic theory, the extrapolation of the pure
SM potential beyond is unwarranted and the scenario is akin to other
ad-hoc inflaton potentials afflicted with significant fine-tuning. The
appealing naturalness of this minimal proposal is therefore lost.Comment: 9 pages. Replaced with published version, plus a footnote clarifying
the use of power counting estimate
Consolidation of complex events via reinstatement in posterior cingulate cortex
It is well-established that active rehearsal increases the efficacy of memory consolidation. It is also known that complex events are interpreted with reference to prior knowledge. However, comparatively little attention has been given to the neural underpinnings of these effects. In healthy adult humans, we investigated the impact of effortful, active rehearsal on memory for events by showing people several short video clips and then asking them to recall these clips, either aloud (Experiment 1) or silently while in an MRI scanner (Experiment 2). In both experiments, actively rehearsed clips were remembered in far greater detail than unrehearsed clips when tested a week later. In Experiment 1, highly similar descriptions of events were produced across retrieval trials, suggesting a degree of semanticization of the memories had taken place. In Experiment 2, spatial patterns of BOLD signal in medial temporal and posterior midline regions were correlated when encoding and rehearsing the same video. Moreover, the strength of this correlation in the posterior cingulate predicted the amount of information subsequently recalled. This is likely to reflect a strengthening of the representation of the video's content. We argue that these representations combine both new episodic information and stored semantic knowledge (or "schemas"). We therefore suggest that posterior midline structures aid consolidation by reinstating and strengthening the associations between episodic details and more generic schematic information. This leads to the creation of coherent memory representations of lifelike, complex events that are resistant to forgetting, but somewhat inflexible and semantic-like in nature
On Bouncing Brane-Worlds, S-branes and Branonium Cosmology
We present several higher-dimensional spacetimes for which observers living
on 3-branes experience an induced metric which bounces. The classes of examples
include boundary branes on generalised S-brane backgrounds and probe branes in
D-brane/anti D-brane systems. The bounces we consider normally would be
expected to require an energy density which violates the weak energy condition,
and for our co-dimension one examples this is attributable to bulk curvature
terms in the effective Friedmann equation. We examine the features of the
acceleration which provides the bounce, including in some cases the existence
of positive acceleration without event horizons, and we give a geometrical
interpretation for it. We discuss the stability of the solutions from the point
of view of both the brane and the bulk. Some of our examples appear to be
stable from the bulk point of view, suggesting the possible existence of stable
bouncing cosmologies within the brane-world framework.Comment: 35 pages, 7 figures, JHEP style. Title changed and references adde
Clinical trials in South Africa : need for capacity building and training
The original publication is available at http://www.samj.org.zaPublishers' Versio
Clinical trials in South Africa : need for capacity building and training
The original publication is available at http://www.samj.org.zaPublishers' Versio
Fibre Inflation: Observable Gravity Waves from IIB String Compactifications
We introduce a simple string model of inflation, in which the inflaton field
can take trans-Planckian values while driving a period of slow-roll inflation.
This leads naturally to a realisation of large field inflation, inasmuch as the
inflationary epoch is well described by the single-field scalar potential . Remarkably, for a broad class of vacua
all adjustable parameters enter only through the overall coefficient , and
in particular do not enter into the slow-roll parameters. Consequently these
are determined purely by the number of \e-foldings, , and so are not
independent: . This implies similar
relations among observables like the primordial scalar-to-tensor amplitude,
, and the scalar spectral tilt, : . is
itself more model-dependent since it depends partly on the post-inflationary
reheat history. In a simple reheating scenario a reheating temperature of
GeV gives , corresponding to and , within reach of future observations. The model is
an example of a class that arises naturally in the context of type IIB string
compactifications with large-volume moduli stabilisation, and takes advantage
of the generic existence there of Kahler moduli whose dominant appearance in
the scalar potential arises from string loop corrections to the Kahler
potential. The inflaton field is a combination of Kahler moduli of a K3-fibered
Calabi-Yau manifold. We believe there are likely to be a great number of models
in this class -- `high-fibre models' -- in which the inflaton starts off far
enough up the fibre to produce observably large primordial gravity waves.Comment: Extended calculations beyond the leading approximations, including
numerical integrations of multi-field evolution; Display an example with ; Simplify the discussion of large fields; Corrected minor errors and
typos; Added references; 41 pages LaTeX, 25 figure
A facial expression for anxiety.
Anxiety and fear are often confounded in discussions of human emotions. However, studies of rodent defensive reactions under naturalistic conditions suggest anxiety is functionally distinct from fear. Unambiguous threats, such as predators, elicit flight from rodents (if an escape-route is available), whereas ambiguous threats (e.g., the odor of a predator) elicit risk assessment behavior, which is associated with anxiety as it is preferentially modulated by anti-anxiety drugs. However, without human evidence, it would be premature to assume that rodent-based psychological models are valid for humans. We tested the human validity of the risk assessment explanation for anxiety by presenting 8 volunteers with emotive scenarios and asking them to pose facial expressions. Photographs and videos of these expressions were shown to 40 participants who matched them to the scenarios and labeled each expression. Scenarios describing ambiguous threats were preferentially matched to the facial expression posed in response to the same scenario type. This expression consisted of two plausible environmental-scanning behaviors (eye darts and head swivels) and was labeled as anxiety, not fear. The facial expression elicited by unambiguous threat scenarios was labeled as fear. The emotion labels generated were then presented to another 18 participants who matched them back to photographs of the facial expressions. This back-matching of labels to faces also linked anxiety to the environmental-scanning face rather than fear face. Results therefore suggest that anxiety produces a distinct facial expression and that it has adaptive value in situations that are ambiguously threatening, supporting a functional, risk-assessing explanation for human anxiet
- …