9,836 research outputs found

    Gemini/GMOS Transmission Spectral Survey: Complete Optical Transmission Spectrum of the hot Jupiter WASP-4b

    Full text link
    We present the complete optical transmission spectrum of the hot Jupiter WASP-4b from 440-940 nm at R ~ 400-1500 obtained with the Gemini Multi-Object Spectrometers (GMOS); this is the first result from a comparative exoplanetology survey program of close-in gas giants conducted with GMOS. WASP-4b has an equilibrium temperature of 1700 K and is favorable to study in transmission due to a large scale height (370 km). We derive the transmission spectrum of WASP-4b using 4 transits observed with the MOS technique. We demonstrate repeatable results across multiple epochs with GMOS, and derive a combined transmission spectrum at a precision about twice above photon noise, which is roughly equal to to one atmospheric scale height. The transmission spectrum is well fitted with a uniform opacity as a function of wavelength. The uniform opacity and absence of a Rayleigh slope from molecular hydrogen suggest that the atmosphere is dominated by clouds with condensate grain size of ~1 um. This result is consistent with previous observations of hot Jupiters since clouds have been seen in planets with similar equilibrium temperatures to WASP-4b. We describe a custom pipeline that we have written to reduce GMOS time-series data of exoplanet transits, and present a thorough analysis of the dominant noise sources in GMOS, which primarily consist of wavelength- and time- dependent displacements of the spectra on the detector, mainly due to a lack of atmospheric dispersion correction.Comment: 23 pages, 12 figures, accepted for publication in AJ, 2017 July

    Adiabatic instability in coupled dark energy-dark matter models

    Full text link
    We consider theories in which there exists a nontrivial coupling between the dark matter sector and the sector responsible for the acceleration of the universe. Such theories can possess an adiabatic regime in which the quintessence field always sits at the minimum of its effective potential, which is set by the local dark matter density. We show that if the coupling strength is much larger than gravitational, then the adiabatic regime is always subject to an instability. The instability, which can also be thought of as a type of Jeans instability, is characterized by a negative sound speed squared of an effective coupled dark matter/dark energy fluid, and results in the exponential growth of small scale modes. We discuss the role of the instability in specific coupled CDM and Mass Varying Neutrino (MaVaN) models of dark energy, and clarify for these theories the regimes in which the instability can be evaded due to non-adiabaticity or weak coupling.Comment: 20 pages, 2 figures; final published versio

    An analysis of the transit times of CoRoT-1b

    Full text link
    I report the results from a study of the transit times for CoRoT-1b, which was one of the first planets discovered by CoRoT. Analysis of the pipeline reduced CoRoT light curve yields a new determination of the physical and orbital parameters of planet and star, along with 35 individual transit times at a typical precision of 36 s. I estimate a planet-to-star radii ratio of 0.1433 +/- 0.0010, a ratio of the planet's orbital semimajor axis to the host star radius of 4.751 +/- 0.045, and an orbital inclination for the planet of 83.88 +/- 0.29 deg. The observed transit times are consistent with CoRoT-1b having a constant period and there is no evidence of an additional planet in the system. I use the observed constancy of the transit times to set limits on the mass of a hypothetical additional planet in a nearby, stable orbit. I ascertain that the most stringent limits (4 M_earth at 3 sigma confidence) can be placed on planets residing in a 1:2 mean motion resonance with the transiting planet. In contrast, the data yield less stringent limits on planets near a 1:3 mean motion resonance (5 M_jup at 3 sigma confidence) than in the surrounding parameter space. In addition, I use a simulation to investigate what sensitivity to additional planets could be obtained from the analysis of data measured for a similar system during a CoRoT long run (100 sequential transit times). I find that for such a scenario, planets with masses greater than twice that of Mars (0.2 M_earth) in the 1:2 mean motion resonance would cause high-significance transit time deviations. Therefore, such planets could be detected or ruled out using CoRoT long run data. I conclude that CoRoT data will indeed be very useful for searching for planets with the transit timing method.Comment: accepted for publication in A&A; v2 replaces with accepted versio

    New Analysis Indicates No Thermal Inversion in the Atmosphere of HD 209458b

    Full text link
    An important focus of exoplanet research is the determination of the atmospheric temperature structure of strongly irradiated gas giant planets, or hot Jupiters. HD 209458b is the prototypical exoplanet for atmospheric thermal inversions, but this assertion does not take into account recently obtained data or newer data reduction techniques. We re-examine this claim by investigating all publicly available Spitzer Space Telescope secondary-eclipse photometric data of HD 209458b and performing a self-consistent analysis. We employ data reduction techniques that minimize stellar centroid variations, apply sophisticated models to known Spitzer systematics, and account for time-correlated noise in the data. We derive new secondary-eclipse depths of 0.119 +/- 0.007%, 0.123 +/- 0.006%, 0.134 +/- 0.035%, and 0.215 +/- 0.008% in the 3.6, 4.5, 5.8, and 8.0 micron bandpasses, respectively. We feed these results into a Bayesian atmospheric retrieval analysis and determine that it is unnecessary to invoke a thermal inversion to explain our secondary-eclipse depths. The data are well-fitted by a temperature model that decreases monotonically between pressure levels of 1 and 0.01 bars. We conclude that there is no evidence for a thermal inversion in the atmosphere of HD 209458b.Comment: 8 pages, 5 figures; accepted for publication in Ap

    The Solar Twin Planet Search II. A Jupiter twin around a solar twin

    Full text link
    Through our HARPS radial velocity survey for planets around solar twin stars, we have identified a promising Jupiter twin candidate around the star HIP11915. We characterize this Keplerian signal and investigate its potential origins in stellar activity. Our analysis indicates that HIP11915 hosts a Jupiter-mass planet with a 3800-day orbital period and low eccentricity. Although we cannot definitively rule out an activity cycle interpretation, we find that a planet interpretation is more likely based on a joint analysis of RV and activity index data. The challenges of long-period radial velocity signals addressed in this paper are critical for the ongoing discovery of Jupiter-like exoplanets. If planetary in nature, the signal investigated here represents a very close analog to the solar system in terms of both Sun-like host star and Jupiter-like planet.Comment: 8 pages, 5 figures; A&A accepted; typos corrected in this versio

    A Search for Water in the Atmosphere of HAT-P-26b Using LDSS-3C

    Get PDF
    The characterization of a physically-diverse set of transiting exoplanets is an important and necessary step towards establishing the physical properties linked to the production of obscuring clouds or hazes. It is those planets with identifiable spectroscopic features that can most effectively enhance our understanding of atmospheric chemistry and metallicity. The newly-commissioned LDSS-3C instrument on Magellan provides enhanced sensitivity and suppressed fringing in the red optical, thus advancing the search for the spectroscopic signature of water in exoplanetary atmospheres from the ground. Using data acquired by LDSS-3C and the Spitzer Space Telescope, we search for evidence of water vapor in the transmission spectrum of the Neptune-mass planet HAT-P-26b. Our measured spectrum is best explained by the presence of water vapor, a lack of potassium, and either a high-metallicity, cloud-free atmosphere or a solar-metallicity atmosphere with a cloud deck at ~10 mbar. The emergence of multi-scale-height spectral features in our data suggests that future observations at higher precision could break this degeneracy and reveal the planet's atmospheric chemical abundances. We also update HAT-P-26b's transit ephemeris, t_0 = 2455304.65218(25) BJD_TDB, and orbital period, p = 4.2345023(7) days.Comment: 9 pages, 8 figures, Accepted for publication in Ap

    The CRIRES Search for Planets Around the Lowest-Mass Stars. I. High-Precision Near-Infrared Radial Velocities with an Ammonia Gas Cell

    Full text link
    Radial velocities measured from near-infrared spectra are a potentially powerful tool to search for planets around cool stars and sub-stellar objects. However, no technique currently exists that yields near-infrared radial velocity precision comparable to that routinely obtained in the visible. We describe a method for measuring high-precision relative radial velocities of these stars from K-band spectra. The method makes use of a glass cell filled with ammonia gas to calibrate the spectrograph response similar to the "iodine cell" technique that has been used very successfully in the visible. Stellar spectra are obtained through the ammonia cell and modeled as the product of a Doppler-shifted template spectrum of the object and a spectrum of the cell, convolved with a variable instrumental profile model. A complicating factor is that a significant number of telluric absorption lines are present in the spectral regions containing useful stellar and ammonia lines. The telluric lines are modeled simultaneously as well using spectrum synthesis with a time-resolved model of the atmosphere over the observatory. The free parameters in the complete model are the wavelength scale of the spectrum, the instrumental profile, adjustments to the water and methane abundances in the atmospheric model, telluric spectrum Doppler shift, and stellar Doppler shift. Tests of the method based on the analysis of hundreds of spectra obtained for late M dwarfs over six months demonstrate that precisions of ~5 m/s are obtainable over long timescales, and precisions of better than 3 m/s can be obtained over timescales up to a week. The obtained precision is comparable to the predicted photon-limited errors, but primarily limited over long timescales by the imperfect modeling of the telluric lines.Comment: Accepted for publication in Ap
    corecore