25,580 research outputs found

    Tube formulas and complex dimensions of self-similar tilings

    Full text link
    We use the self-similar tilings constructed by the second author in "Canonical self-affine tilings by iterated function systems" to define a generating function for the geometry of a self-similar set in Euclidean space. This tubular zeta function encodes scaling and curvature properties related to the complement of the fractal set, and the associated system of mappings. This allows one to obtain the complex dimensions of the self-similar tiling as the poles of the tubular zeta function and hence develop a tube formula for self-similar tilings in \Rd\mathbb{R}^d. The resulting power series in ϵ\epsilon is a fractal extension of Steiner's classical tube formula for convex bodies K \ci \bRd. Our sum has coefficients related to the curvatures of the tiling, and contains terms for each integer i=0,1,...,d−1i=0,1,...,d-1, just as Steiner's does. However, our formula also contains terms for each complex dimension. This provides further justification for the term "complex dimension". It also extends several aspects of the theory of fractal strings to higher dimensions and sheds new light on the tube formula for fractals strings obtained in "Fractal Geometry and Complex Dimensions" by the first author and Machiel van Frankenhuijsen.Comment: 41 pages, 6 figures, incorporates referee comments and references to new result

    Tunnel effect for semiclassical random walk

    Get PDF
    We study a semiclassical random walk with respect to a probability measure with a finite number n_0 of wells. We show that the associated operator has exactly n_0 exponentially close to 1 eigenvalues (in the semiclassical sense), and that the other are O(h) away from 1. We also give an asymptotic of these small eigenvalues. The key ingredient in our approach is a general factorization result of pseudodifferential operators, which allows us to use recent results on the Witten Laplacian

    Proca equations derived from first principles

    Full text link
    Gersten has shown how Maxwell equations can be derived from first principles, similar to those which have been used to obtain the Dirac relativistic electron equation. We show how Proca equations can be also deduced from first principles, similar to those which have been used to find Dirac and Maxwell equations. Contrary to Maxwell equations, it is necessary to introduce a potential in order to transform a second order differential equation, as the Klein-Gordon equation, into a first order differential equation, like Proca equations.Comment: 6 page

    Clumpy Disc and Bulge Formation

    Get PDF
    We present a set of hydrodynamical/Nbody controlled simulations of isolated gas rich galaxies that self-consistently include SN feedback and a detailed chemical evolution model, both tested in cosmological simulations. The initial conditions are motivated by the observed star forming galaxies at z ~ 2-3. We find that the presence of a multiphase interstellar media in our models promotes the growth of disc instability favouring the formation of clumps which in general, are not easily disrupted on timescales compared to the migration time. We show that stellar clumps migrate towards the central region and contribute to form a classical-like bulge with a Sersic index, n > 2. Our physically-motivated Supernova feedback has a mild influence on clump survival and evolution, partially limiting the mass growth of clumps as the energy released per Supernova event is increased, with the consequent flattening of the bulge profile. This regulation does not prevent the building of a classical-like bulge even for the most energetic feedback tested. Our Supernova feedback model is able to establish a self-regulated star formation, producing mass-loaded outflows and stellar age spreads comparable to observations. We find that the bulge formation by clumps may coexit with other channels of bulge assembly such as bar and mergers. Our results suggest that galactic bulges could be interpreted as composite systems with structural components and stellar populations storing archaeological information of the dynamical history of their galaxy.Comment: Accepted for publication in MNRAS - Aug. 20, 201

    Minkowski measurability results for self-similar tilings and fractals with monophase generators

    Get PDF
    In a previous paper [arXiv:1006.3807], the authors obtained tube formulas for certain fractals under rather general conditions. Based on these formulas, we give here a characterization of Minkowski measurability of a certain class of self-similar tilings and self-similar sets. Under appropriate hypotheses, self-similar tilings with simple generators (more precisely, monophase generators) are shown to be Minkowski measurable if and only if the associated scaling zeta function is of nonlattice type. Under a natural geometric condition on the tiling, the result is transferred to the associated self-similar set (i.e., the fractal itself). Also, the latter is shown to be Minkowski measurable if and only if the associated scaling zeta function is of nonlattice type.Comment: 18 pages, 1 figur

    Pointwise tube formulas for fractal sprays and self-similar tilings with arbitrary generators

    Get PDF
    In a previous paper by the first two authors, a tube formula for fractal sprays was obtained which also applies to a certain class of self-similar fractals. The proof of this formula uses distributional techniques and requires fairly strong conditions on the geometry of the tiling (specifically, the inner tube formula for each generator of the fractal spray is required to be polynomial). Now we extend and strengthen the tube formula by removing the conditions on the geometry of the generators, and also by giving a proof which holds pointwise, rather than distributionally. Hence, our results for fractal sprays extend to higher dimensions the pointwise tube formula for (1-dimensional) fractal strings obtained earlier by Lapidus and van Frankenhuijsen. Our pointwise tube formulas are expressed as a sum of the residues of the "tubular zeta function" of the fractal spray in Rd\mathbb{R}^d. This sum ranges over the complex dimensions of the spray, that is, over the poles of the geometric zeta function of the underlying fractal string and the integers 0,1,...,d0,1,...,d. The resulting "fractal tube formulas" are applied to the important special case of self-similar tilings, but are also illustrated in other geometrically natural situations. Our tube formulas may also be seen as fractal analogues of the classical Steiner formula.Comment: 43 pages, 13 figures. To appear: Advances in Mathematic

    Efficient and Perfect domination on circular-arc graphs

    Get PDF
    Given a graph G=(V,E)G = (V,E), a \emph{perfect dominating set} is a subset of vertices V′⊆V(G)V' \subseteq V(G) such that each vertex v∈V(G)∖V′v \in V(G)\setminus V' is dominated by exactly one vertex v′∈V′v' \in V'. An \emph{efficient dominating set} is a perfect dominating set V′V' where V′V' is also an independent set. These problems are usually posed in terms of edges instead of vertices. Both problems, either for the vertex or edge variant, remains NP-Hard, even when restricted to certain graphs families. We study both variants of the problems for the circular-arc graphs, and show efficient algorithms for all of them
    • …
    corecore