500 research outputs found

    The spatial distribution of O-B5 stars in the solar neighborhood as measured by Hipparcos

    Full text link
    We have developed a method to calculate the fundamental parameters of the vertical structure of the Galaxy in the solar neighborhood from trigonometric parallaxes alone. The method takes into account Lutz-Kelker-type biases in a self-consistent way and has been applied to a sample of O-B5 stars obtained from the Hipparcos catalog. We find that the Sun is located 24.2 +/- 1.7 (random) +/- 0.4 (systematic) pc above the galactic plane and that the disk O-B5 stellar population is distributed with a scale height of 34.2 +/- 0.8 (random) +/- 2.5 (systematic) pc and an integrated surface density of (1.62 +/- 0.04 (random) +/- 0.14 (systematic)) 10^{-3} stars pc^{-2}. A halo component is also detected in the distribution and constitutes at least ~5% of the total O-B5 population. The O-B5 stellar population within ~100 pc of the Sun has an anomalous spatial distribution, with a less-than-average number density. This local disturbance is probably associated with the expansion of Gould's belt.Comment: 14 pages, 3 figures, to appear in the May 2001 issue of the Astronomical Journa

    Astrometric Positions and Proper Motions of 19 Radio Stars

    Full text link
    We have used the Very Large Array, linked with the Pie Town Very Long Baseline Array antenna, to determine astrometric positions of 19 radio stars in the International Celestial Reference Frame (ICRF). The positions of these stars were directly linked to the positions of distant quasars through phase referencing observations. The positions of the ICRF quasars are known to 0.25 mas, thus providing an absolute reference at the angular resolution of our radio observations. Average values for the errors in our derived positions for all sources were 13 mas and 16 mas in R.A. and declination respectively, with accuracies approaching 1-2 mas for some of the stars observed. Differences between the ICRF positions of the 38 quasars, and those measured from our observations showed no systematic offsets, with mean values of -0.3 mas in R.A. and -1.0 mas in declination. Standard deviations of the quasar position differences of 17 mas and 11 mas in R.A. and declination respectively, are consistent with the mean position errors determined for the stars. Our measured positions were combined with previous Very Large Array measurements taken from 1978-1995 to determine the proper motions of 15 of the stars in our list. With mean errors of approximately 1.6 mas/yr, the accuracies of our proper motions approach those derived from Hipparcos, and for a few of the stars in our program, are better than the Hipparcos values. Comparing the positions of our radio stars with the Hipparcos catalog, we find that at the epoch of our observations, the two frames are aligned to within formal errors of approximately 3 mas. This result confirms that the Hipparcos frame is inertial at the expected level.Comment: 20 pages, 9 figures Accepted by the Astronomical Journal, 2003 March 1

    Reconsidering the galactic coordinate system

    Full text link
    Initially defined by the IAU in 1958, the galactic coordinate system was thereafter in 1984 transformed from the B1950.0 FK4-based system to the J2000.0 FK5-based system. In 1994, the IAU recommended that the dynamical reference system FK5 be replaced by the ICRS, which is a kinematical non-rotating system defined by a set of remote radio sources. However the definition of the galactic coordinate system was not updated. We consider that the present galactic coordinates may be problematic due to the unrigorous transformation method from the FK4 to the FK5, and due to the non-inertiality of the FK5 system with respect to the ICRS. This has led to some confusions in applications of the galactic coordinates. We tried to find the transformation matrix in the framework of the ICRS after carefully investigating the definition of the galactic coordinate system and transformation procedures, however we could not find a satisfactory galactic coordinate system that is connected steadily to the ICRS. To avoid unnecessary misunderstandings, we suggest to re-consider the definition of the galactic coordinate system which should be directly connected with the ICRS for high precise observation at micro-arcsecond level.Comment: 10 pages, 3 figures, accepted for publication in A&

    Foreword

    Get PDF

    Astrometric Control of the Inertiality of the Hipparcos Catalog

    Full text link
    Based on the most complete list of the results of an individual comparison of the proper motions for stars of various programs common to the Hipparcos catalog, each of which is an independent realization of the inertial reference frame with regard to stellar proper motions, we redetermined the vector ω\omega of residual rotation of the ICRS system relative to the extragalactic reference frame. The equatorial components of this vector were found to be the following: ωx=+0.04±0.15\omega_x = +0.04\pm 0.15 mas yr1^{-1}, ωy=+0.18±0.12\omega_y = +0.18\pm 0.12 mas yr1^{-1}, and ωz=0.35±0.09\omega_z = -0.35\pm 0.09 mas yr1^{-1}.Comment: 8 pages, 1 figur

    An Exactly Conservative Integrator for the n-Body Problem

    Get PDF
    The two-dimensional n-body problem of classical mechanics is a non-integrable Hamiltonian system for n > 2. Traditional numerical integration algorithms, which are polynomials in the time step, typically lead to systematic drifts in the computed value of the total energy and angular momentum. Even symplectic integration schemes exactly conserve only an approximate Hamiltonian. We present an algorithm that conserves the true Hamiltonian and the total angular momentum to machine precision. It is derived by applying conventional discretizations in a new space obtained by transformation of the dependent variables. We develop the method first for the restricted circular three-body problem, then for the general two-dimensional three-body problem, and finally for the planar n-body problem. Jacobi coordinates are used to reduce the two-dimensional n-body problem to an (n-1)-body problem that incorporates the constant linear momentum and center of mass constraints. For a four-body choreography, we find that a larger time step can be used with our conservative algorithm than with symplectic and conventional integrators.Comment: 17 pages, 3 figures; to appear in J. Phys. A.: Math. Ge

    Correlated errors in Hipparcos parallaxes towards the Pleiades and the Hyades

    Get PDF
    We show that the errors in the Hipparcos parallaxes towards the Pleiades and the Hyades open clusters are spatially correlated over angular scales of 2 to 3 deg, with an amplitude of up to 2 mas. This correlation is stronger than expected based on the analysis of the Hipparcos catalog. We predict the parallaxes of individual cluster members, pi_pm, from their Hipparcos proper motions, assuming that all cluster members have the same space velocity. We compare pi_pm with their Hipparcos parallaxes, pi_Hip, and find that there are significant spatial correlations in pi_Hip. We derive a distance modulus to the Pleiades of 5.58 +- 0.18 mag using the radial-velocity gradient method. This value, agrees very well with the distance modulus of 5.60 +- 0.04 mag determined using the main-sequence fitting technique, compared with the value of 5.33 +- 0.06 inferred from the average of the Hipparcos parallaxes of the Pleiades members. We show that the difference between the main-sequence fitting distance and the Hipparcos parallax distance can arise from spatially correlated errors in the Hipparcos parallaxes of individual Pleiades members. Although the Hipparcos parallax errors towards the Hyades are spatially correlated in a manner similar to those of the Pleiades, the center of the Hyades is located on a node of this spatial structure. Therefore, the parallax errors cancel out when the average distance is estimated, leading to a mean Hyades distance modulus that agrees with the pre-Hipparcos value. We speculate that these spatial correlations are also responsible for the discrepant distances that are inferred using the mean Hipparcos parallaxes to some open clusters. Finally, we note that our conclusions are based on a purely geometric method and do not rely on any models of stellar isochrones.Comment: 33 pages including 10 Figures, revised version accepted for publication in Ap

    Evolutionary Dynamics While Trapped in Resonance: A Keplerian Binary System Perturbed by Gravitational Radiation

    Get PDF
    The method of averaging is used to investigate the phenomenon of capture into resonance for a model that describes a Keplerian binary system influenced by radiation damping and external normally incident periodic gravitational radiation. The dynamical evolution of the binary orbit while trapped in resonance is elucidated using the second order partially averaged system. This method provides a theoretical framework that can be used to explain the main evolutionary dynamics of a physical system that has been trapped in resonance.Comment: REVTEX Style, Submitte

    Electrochemical reduction of hematite-based ceramics in alkaline medium: challenges in electrode design

    Get PDF
    Electrochemical reduction of low-conductive hematite-based ceramics represents a novel approach for iron recovery and waste valorisation. The process itself allows a flexible switching between hydrogen generation and iron reduction, important for the intermittent renewable-energy-powered electrolytic process. The present study focuses on the direct electrochemical reduction of aluminium-containing hematite in strong alkaline media. Within this scope, the reduction mechanisms of porous and dense cathodes, with 60%, 37% and 3% of open porosity, were investigated using different types of electrodes configuration: nickel-foil and Ag-modified nickel-foil supported configuration (cathodes facing or against the counter electrode), and nickel-mesh supported configuration. The efficiency of the iron reduction was compared for different electrode concepts. The results highlight the importance of electrolyte access to the interface between the metallic current collector and ceramic cathode for attaining reasonable electroreduction currents. Both excessively porous and dense ceramic cathodes are hardly suitable for such reduction process, showing a necessity to find a compromise between mechanical strength of the electrode and its open porosity, essential for the electrolyte access.publishe
    corecore