2,347 research outputs found

    Evolution in Yoderimyinae (Eomyidae: Rodentia), with new material from the White River Formation (Chadronian) at Flagstaff Rim, Wyoming

    Get PDF
    Three species of Yoderimyinae (Eomyidae: Rodentia) are recognized from the lower part of the White River Formation (early to medial Chadronian) in the Flagstaff Rim area, Wyoming. The new material allows an improved diagnosis for the subfamily. The enamel microstructure of Yoderimyinae supports its inclusion in the Eomyidae. A new genus, Zemiodontomys, is established for Yoderimys burkei Black, and new material, including upper dentition, is referred to this species. This genus differs from Yoderimys in having higher crowned and more lophodont teeth and in lacking P3. A second new genus, Litoyoderimys, is established for Yoderimys lustrorum Wood, and a new species, L. auogoleus, is referred to the genus. This genus has lower crowned, more cuspate teeth than Yoderimys. Through early and medial Chadronian time, evolution in yoderimyines includes the following morphologic transformations: increase in size; increase in crown height and lophodonty of cheek teeth; reduction of P3 (from double-rooted, to single-rooted, to absent); increase in relative size of P4 and p4; and increased longitudinal torsion of the mandibl

    Comparison of Birkeland current observations during two magnetic cloud events with MHD simulations

    Get PDF
    Low altitude field-aligned current densities ob- tained from global magnetospheric simulations are compared with two-dimensional distributions of Birkeland currents at the topside ionosphere derived from magnetic field observa- tions by the constellation of Iridium satellites. We present the analysis of two magnetic cloud events, 17–19 August 2003 and 19–21 March 2001, where the interplanetary magnetic field (IMF) rotates slowly (∼10◦/h) to avoid time-aliasing in the magnetic perturbations used to calculate the Birkeland currents. In the August 2003 event the IMF rotates from southward to northward while maintaining a negative IMF By during much of the interval. During the March 2001 event the IMF direction varies from dawnward to southward to duskward. We find that the distributions of the Birkeland current densities in the simulations agree qualitatively with the observations for northward IMF. For southward IMF, the dayside Region-1 currents are reproduced in the simu- ◦ the ionospheric grids in the simulations and the observations is shown to have only secondary effect on the magnitudes of the Birkeland currents. The electric potentials in the simu- lation for southward IMF periods are twice as large as those obtained from measurements of the plasma drift velocities by DMSP, implying that the reconnection rates in the simulation are too large. Keywords. Ionosphere (Electric fields and currents; Ionosphere-magnetosphere interactions; Modeling and forecasting) 1 Introduction Global magnetohydrodynamic (MHD) models are the most comprehensive numerical tool for studying the coupling of energy and momentum of the solar wind into the Earth’s magnetosphere and ionosphere. A particular advantage of global MHD simulations is the ability to provide continu- ous temporal and spatial coverage of key physical parame- ters over the entire simulation volume. For this reason, MHD simulations have become one of the principal tools for study- ing space weather events such as the interaction of the Earth’s magnetosphere with coronal mass ejections (CMEs) (Ridley et al., 2002) as well as magnetic storms (Slinker et al., 1998; Goodrich et al., 1998) and substorms (Lyon et al., 1998; Lopez et al., 1998; Wiltberger et al., 2000). Since the simula- tion results are frequently used to interpret physical processes in the magnetosphere–ionosphere system, assessing their ac- curacy by comparison with observations is an important task. A number of such studies have been carried out in the past us- ing space-based (Frank et al., 1995; Raeder et al., 1997) and ground-based observations (Ridley et al., 2001), or a com- bination thereof (Fedder et al., 1998; Slinker et al., 1999). However, interpreting the discrepancies between model and observations is not straightforward because the observational lation, but appear on average 5 served location, while the nightside Region-1 currents and the Region-2 currents are largely under-represented. Com- parison of the observed and simulated Birkeland current dis- tributions, which are intimately related to the plasma drifts at the ionosphere, shows that the ionospheric convection pat- tern in the MHD model and its dependence on the IMF ori- entation is essentially correct. The Birkeland total currents in the simulations are about a factor of 2 larger than observed during southward IMF. For Bz\u3e0 the disparity in the total current is reduced and the simulations for purely northward IMF agree with the observations to within 10%. The dispar- ities in the magnitudes of the Birkeland currents between the observations and the simulation results are a combined effect of the simulation overestimating the ionospheric electric field and of the Iridium fits underestimating the magnetic pertur- bations

    The initial temporal evolution of a feedback dynamo for Mercury

    Full text link
    Various possibilities are currently under discussion to explain the observed weakness of the intrinsic magnetic field of planet Mercury. One of the possible dynamo scenarios is a dynamo with feedback from the magnetosphere. Due to its weak magnetic field Mercury exhibits a small magnetosphere whose subsolar magnetopause distance is only about 1.7 Hermean radii. We consider the magnetic field due to magnetopause currents in the dynamo region. Since the external field of magnetospheric origin is antiparallel to the dipole component of the dynamo field, a negative feedback results. For an alpha-omega-dynamo two stationary solutions of such a feedback dynamo emerge, one with a weak and the other with a strong magnetic field. The question, however, is how these solutions can be realized. To address this problem, we discuss various scenarios for a simple dynamo model and the conditions under which a steady weak magnetic field can be reached. We find that the feedback mechanism quenches the overall field to a low value of about 100 to 150 nT if the dynamo is not driven too strongly

    Sustainable use of mangroves as sources of valuable medicinal compounds: Species identification, propagation and secondary metabolite composition

    Get PDF
    Mangroves are able to withstand a number of stress factors, such as high salt concentrations, tidal flooding, strong wind, solar radiation and heat. Their ability to grow under these circumstances is based on morphological and physiological adaptations, among them the high abundance of plant secondary metabolites. We are interested to investigate and exploit their medicinal and biotechnological potential for new bioactive compounds, without collecting material in the countries of origin and in a sustainable way. Therefore, a simple identification system based on molecular marker analysis, and a sustainable greenhouse propagation protocol for the continuous supply of fresh plant material, were established. DNA barcoding of the internal transcribed spacer (ITS) including ITS1, the 5.8S rRNA region and ITS2 as a molecular marker was applied for several mangrove species. The obtained data and GenBank sequences were used for species identification. Three mangrove species are cultivated in our greenhouse and propagated in different ways: Avicennia species produced many propagules in the greenhouse, however, further propagation by cuttings was not successful. Laguncularia racemosa was propagated by cuttings in a fog house whereas Bruguiera cylindrica was difficult to cultivate and propagation was not successful. Finally, the concentration of secondary phenolic compounds, including flavonoids, and the content of major elements were compared among naturally and greenhouse-grown mangroves indicating comparable amounts and composition

    Active current sheets and hot flow anomalies in Mercury's bow shock

    Full text link
    Hot flow anomalies (HFAs) represent a subset of solar wind discontinuities interacting with collisionless bow shocks. They are typically formed when the normal component of motional (convective) electric field points toward the embedded current sheet on at least one of its sides. The core region of an HFA contains hot and highly deflected ion flows and rather low and turbulent magnetic field. In this paper, we report first observations of HFA-like events at Mercury identified over a course of two planetary years. Using data from the orbital phase of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, we identify a representative ensemble of active current sheets magnetically connected to Mercury's bow shock. We show that some of these events exhibit unambiguous magnetic and particle signatures of HFAs similar to those observed earlier at other planets, and present their key physical characteristics. Our analysis suggests that Mercury's bow shock does not only mediate the flow of supersonic solar wind plasma but also provides conditions for local particle acceleration and heating as predicted by previous numerical simulations. Together with earlier observations of HFA activity at Earth, Venus and Saturn, our results confirm that hot flow anomalies are a common property of planetary bow shocks, and show that the characteristic size of these events is of the order of one planetary radius.Comment: 39 pages, 15 figures, 2 table

    Decoding the multifaceted HIV-1 virus-host interactome

    Get PDF
    Recently in BMC Medical Genomics, Tozeren and colleagues have uncovered virus-host interactions by searching for conserved peptide motifs in HIV and human proteins. Their computational model provides a novel perspective in the interpretation of high-throughput data on the HIV-host interactome

    Noncovalent Interactions by QMC: Speedup by One-Particle Basis-Set Size Reduction

    Full text link
    While it is empirically accepted that the fixed-node diffusion Monte-Carlo (FN-DMC) depends only weakly on the size of the one-particle basis sets used to expand its guiding functions, limits of this observation are not settled yet. Our recent work indicates that under the FN error cancellation conditions, augmented triple zeta basis sets are sufficient to achieve a benchmark level of 0.1 kcal/mol in a number of small noncovalent complexes. Here we report on a possibility of truncation of the one-particle basis sets used in FN-DMC guiding functions that has no visible effect on the accuracy of the production FN-DMC energy differences. The proposed scheme leads to no significant increase in the local energy variance, indicating that the total CPU cost of large-scale benchmark noncovalent interaction energy FN-DMC calculations may be reduced.Comment: ACS book chapter, accepte

    Polar and Cluster observations of a dayside inverted-V during conjunction

    Get PDF
    We investigate particle and fields data during a conjunction of the Polar and Cluster spacecraft. This conjunction occurs near the dayside cusp boundary layer when a dayside inverted-V was observed in the particle data of both satellites. Electron, ion, electric field, and magnetic field data from each satellite confirm that the dayside inverted-V (DSIV) structure is present at the location of both satellites and the electric fields persist from the altitude of the Polar (lower) spacecraft to the altitude of the Cluster spacecraft. We observe accelerated, precipitating electrons and upward ions along the magnetic field. In addition, large amplitude electric fields perpendicular to the ambient magnetic field seen by Polar and by Cluster suggest significant parallel electric fields associated with these events. For similar DSIV events observed by the Polar spacecraft, plasma waves (identified as possible Alfvén waves) have been observed to propagate in both directions along the magnetic field line. Future conjunctions will be necessary to confirm that DSIVs are associated with reconnection sites

    MESSENGER Magnetic Field Observations of Upstream Ultra-Low Frequency Waves at Mercury

    Get PDF
    The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth's is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury's bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study of upstream waves in the Mercury's foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury's foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. The most common foreshock waves have frequencies near 2 Hz, with properties similar to the I-Hz waves in the Earth's foreshock. They are present in both the flyby data and in every orbit of the orbital data we have surveyed. The most common wave phenomenon in the Earth's foreshock is the large-amplitude 30-s waves, but similar waves at Mercury have frequencies at near 0.1 Hz and occur only sporadically with short durations (a few wave cycles). Superposed on the "30-s" waves, there are spectral peaks at near 0.6 Hz, not reported previously in Mariner 10 data. We will discuss wave properties and their occurrence characteristics in this paper
    corecore