468 research outputs found

    An investigation of the basic properties of irradiated polyethylene memory materials

    Get PDF
    Properties of irradiated polyethylene memory material

    Development of a prototype plastic space erectable satellite Quarterly report, Jun. - Aug. 1966

    Get PDF
    Copper plated high-density polyethylene film evaluation for space erectable satellite desig

    Geometric Inhomogeneous Random Graphs

    No full text
    Real-world networks, like social networks or the internet infrastructure, have structural properties such as their large clustering coefficient that can best be described in terms of an underlying geometry. This is why the focus of the literature on theoretical models for real-world networks shifted from classic models without geometry, such as Chung-Lu random graphs, to modern geometry-based models, such as hyperbolic random graphs. With this paper we contribute to the theoretical analysis of these modern, more realistic random graph models. However, we do not directly study hyperbolic random graphs, but replace them by a more general model that we call \emph{geometric inhomogeneous random graphs} (GIRGs). Since we ignore constant factors in the edge probabilities, our model is technically simpler (specifically, we avoid hyperbolic cosines), while preserving the qualitative behaviour of hyperbolic random graphs, and we suggest to replace hyperbolic random graphs by our new model in future theoretical studies. We prove the following fundamental structural and algorithmic results on GIRGs. (1) We provide a sampling algorithm that generates a random graph from our model in expected linear time, improving the best-known sampling algorithm for hyperbolic random graphs by a factor O(n)O(\sqrt{n}), (2) we establish that GIRGs have a constant clustering coefficient, (3) we show that GIRGs have small separators, i.e., it suffices to delete a sublinear number of edges to break the giant component into two large pieces, and (4) we show how to compress GIRGs using an expected linear number of bits

    Average Distance in a General Class of Scale-Free Networks with Underlying Geometry

    Get PDF
    In Chung-Lu random graphs, a classic model for real-world networks, each vertex is equipped with a weight drawn from a power-law distribution (for which we fix an exponent 2<β<32 < \beta < 3), and two vertices form an edge independently with probability proportional to the product of their weights. Modern, more realistic variants of this model also equip each vertex with a random position in a specific underlying geometry, which is typically Euclidean, such as the unit square, circle, or torus. The edge probability of two vertices then depends, say, inversely polynomial on their distance. We show that specific choices, such as the underlying geometry being Euclidean or the dependence on the distance being inversely polynomial, do not significantly influence the average distance, by studying a generic augmented version of Chung-Lu random graphs. Specifically, we analyze a model where the edge probability of two vertices can depend arbitrarily on their positions, as long as the marginal probability of forming an edge (for two vertices with fixed weights, one fixed position, and one random position) is as in Chung-Lu random graphs, i.e., proportional to the product of their weights. The resulting class contains Chung-Lu random graphs, hyperbolic random graphs, and geometric inhomogeneous random graphs as special cases. Our main result is that this general model has the same average distance as Chung-Lu random graphs, up to a factor 1+o(1)1+o(1). The proof also yields that our model has a giant component and polylogarithmic diameter with high probability

    Development of a prototype plastic space erectable satellite Quarterly report, Mar. - May 1966

    Get PDF
    Mechanical and tensile properties of polyethylene films for prototype plastic space erectable structure

    Greedy Routing and the Algorithmic Small-World Phenomenom

    Get PDF
    The algorithmic small-world phenomenon, empirically established by Milgram's letter forwarding experiments from the 60s, was theoretically explained by Kleinberg in 2000. However, from today's perspective his model has several severe shortcomings that limit the applicability to real-world networks. In order to give a more convincing explanation of the algorithmic small-world phenomenon, we study greedy routing in a more realistic random graph model (geometric inhomogeneous random graphs), which overcomes the previous shortcomings. Apart from exhibiting good properties in theory, it has also been extensively experimentally validated that this model reasonably captures real-world networks. In this model, we show that greedy routing succeeds with constant probability, and in case of success almost surely finds a path that is an almost shortest path. Our results are robust to changes in the model parameters and the routing objective. Moreover, since constant success probability is too low for technical applications, we study natural local patching methods augmenting greedy routing by backtracking and we show that such methods can ensure success probability 1 in a number of steps that is close to the shortest path length. These results also address the question of Krioukov et al. whether there are efficient local routing protocols for the internet graph. There were promising experimental studies, but the question remained unsolved theoretically. Our results give for the first time a rigorous and analytical answer, assuming our random graph model

    Stimulation of gastrointestinal antibody to Shiga toxin by orogastric immunization in mice

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141579/1/imcb69.pd

    Evaluation of the health status of Araucaria araucana trees using hyperspectral images

    Get PDF
    Revista oficial de la Asociación Española de Teledetección[EN] The Araucaria araucana is an endemic species from Chile and Argentina, which has a high biological, scientific and cultural value and since 2016 has shown a severe affection of leaf damage in some individuals, causing in some cases their death. The purpose of this research was to detect, from hyperspectral images, the individuals of the Araucaria species (Araucaria araucana (Molina and K. Koch)) and its degree of disease, by isolating its spectral signature and evaluating its physiological state through indices of vegetation and positioning techniques of the inflection point of the red edge, in a sector of the Ralco National Reserve, Biobío Region, Chile. Seven images were captured with the HYSPEX VNIR-1600 hyperspectral sensor, with 160 bands and a random sampling was carried out in the study area, where 90 samples of Araucarias were collected. In addition, from the remote sensing techniques applied, spatial data mining was used, in which Araucarias were classified without symptoms of disease and with symptoms of disease. A 55.11% overall accuracy was obtained in the classification of the image, 53.4% in the identification of healthy Araucaria and 55.96% in the identification of affected Araucaria. In relation to the evaluation of their sanitary status, the index with the best percentage of accuracy is the MSR (70.73%) and the one with the lowest value is the SAVI (35.47%). The positioning technique of the inflection point of the red edge delivered an accuracy percentage of 52.18% and an acceptable Kappa index.[ES] La Araucaria araucana es una especie endémica de Chile y Argentina, presenta un alto valor biológico, científico, cultural y desde el año 2016 ha evidenciado una severa afección del daño foliar en algunos individuos, causando en ciertos casos su muerte. Esta investigación tiene por objetivo detectar a partir de imágenes hiperespectrales, los individuos de la especie Araucaria (Araucaria araucana (Molina y K. Koch)) y su grado de afección, mediante el aislamiento de su firma espectral y la evaluación de su estado sanitario mediante índices de vegetación y técnicas de posicionamiento del punto de inflexión del red edge, en un sector de la Reserva Nacional Ralco, Región del Biobío, Chile. Se capturaron siete imágenes con el sensor hiperespectral HYSPEX VNIR-1600, con 160 bandas y se realizó un muestreo aleatorio en el área de estudio, donde se recolectaron 90 muestras de Araucarias. Además, de las técnicas de teledetección aplicadas, se utilizó minería de datos espaciales, que permitió clasificar las Araucarias con y sin síntomas de afección. Se logró un 55,11% de exactitud global en la clasificación de la imagen, un 53,4% en la identificación de Araucarias sanas y un 55,96% en la identificación de Araucarias afectadas. En relación a la evaluación de su estado sanitario, el índice con mejor porcentaje de exactitud es el MSR (70,73%) y el con menor porcentaje de exactitud es el SAVI (35,47%). La técnica de posicionamiento del punto de inflexión del red edge entregó un porcentaje de exactitud de 52,18% y un índice de Kappa aceptable.Este artículo se ha realizado en el contexto de fin de grado del Magíster en Teledetección, Facultad de Ciencias de la Universidad Mayor y en el mar-co del Proyecto “Prospección fitosanitaria para determinar los niveles de afección de daño foliar en bosques de Araucaria araucana de las regiones del Biobío, Araucanía y Los Ríos, 2017/ID: 633-32-LE16, financiado por la Corporación Nacional Forestal (CONAF) de Chile. La autora principal agradece a la Universidad Mayor por la oportuni-dad de desarrollar esta investigación; en especial a Idania Briceño por sus valiosos comentarios y Waldo Pérez, por su apoyo en las campañas de terreno.Medina, N.; Vidal, P.; Cifuentes, R.; Torralba, J.; Keusch, F. (2018). Evaluación del estado sanitario de individuos de Araucaria araucana a través de imágenes hiperespectrales. Revista de Teledetección. (52):41-53. https://doi.org/10.4995/raet.2018.10916SWORD415352Adamczyk, J., Osberger, A. 2015. Red-edge vegetation indices for detecting and assessing disturbances in Norway spruce dominated mountain forests. International Journal of Applied Earth Observation and Geoinformation, 37, 90-99. https://doi.org/10.1016/j.jag.2014.10.013Alonzo, M., Bookhagen, B., Roberts, D. A. 2014. Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sensing of Environment, 148, 70-83. https://doi.org/10.1016/J.RSE.2014.03.018Ángel, Y. 2012. Metodología para identificar cultivos de coca mediante análisis de parámetros red edge y espectroscopia de imágenes. Tesis magister, Universidad Nacional de Colombia, Colombia.Armesto, J., Villagrán, C., Arroyo, M. 1996. Ecología de los bosques nativos de Chile (Vol. 1). Santiago de Chile: Editorial Universitaria.Awad, M. M. 2018. Forest mapping: a comparison between hyperspectral and multispectral images and technologies. Journal of Forestry Research, 29(5), 1395-1405 https://doi.org/10.1007/s11676-017- 0528-yBaldeck, C. A., Asner, G. P., Martin, R. E., Anderson, C. B., Knapp, D. E., Kellner, J. R., Wright, S. J. 2015. Operational Tree Species Mapping in a Diverse Tropical Forest with Airborne Imaging Spectroscopy. PLOS ONE, 10(7), e0118403. https://doi.org/10.1371/journal.pone.0118403Birth, G., McVey, G. 1968. Measuring the color of growing turf with a reflectance spectrophotometer. Agronomy Journal, 60(6), 640-643. https://doi. org/10.2134/agronj1968.00021962006000060016xBorràs, J., Delegido, J., Pezzola, A., Pereira, M., Morassi, G., Camps-Valls, G. 2017. Clasificación de usos del suelo a partir de imágenes Sentinel-2. Revista de Teledetección, 48, 55-66. https://doi.org/10.4995/raet.2017.7133Centro del Clima y la Resiliencia (CR2). 2018. Explorador Climático. http://explorador.cr2.cl/ Último acceso: 28 de noviembre, 2018.Chen, J. M. 1996. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing, 22(3), 229-242. https://doi.org/10.1080/07038992.1996.10855178Cho, M. A., Skidmore, A. K. 2006. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote sensing of environment, 101(2), 181-193. https://doi.org/10.1016/j.rse.2005.12.011Cho, M. A., Debba, P., Mutanga, O., Dudeni-Tlhone, N., Magadla, T., Khuluse, S. A. 2012. Potential utility of the spectral red-edge region of SumbandilaSat imagery for assessing indigenous forest structure and health. International Journal of Applied Earth Observation and Geoinformation, 16, 85-93.Clark, M. L., Roberts, D. A. 2012. Species-Level Differences in Hyperspectral Metrics among Tropical Rainforest Trees as Determined by a Tree-Based Classifier. Remote Sensing, 4(6), 1820-1855. https:// doi.org/10.3390/rs4061820CONAF (Corporación Nacional Forestal, CL). 2008. Catastro de los Recursos Vegetacionales Nativos de Chile, Región del Bíobio, Chile.Dalponte, M., Bruzzone, L., Gianelle, D. 2012. Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sensing of Environment, 123, 258-270. https://doi.org/10.1016/J.RSE.2012.03.013Dalponte, M., Orka, H. O., Gobakken, T., Gianelle, D., Naesset, E. 2013. Tree Species Classification in Boreal Forests With Hyperspectral Data. IEEE Transactions on Geoscience and Remote Sensing, 51(5), 2632- 2645. https://doi.org/10.1109/TGRS.2012.2216272Dawson, T. P., Curran, P. J. 1998. A new technique for interpolating red edge position. International Journal of Remote Sensing, 19(11), 2133−2139.https://doi. org/10.1080/014311698214910Drake, F. 2004. Uso sostenible en bosques de Araucaria araucana (Mol.) K. Koch; aplicación de modelos de gestión. Tesis doctoral, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes, Universidad de Córdoba, Córdoba, España.Fassnacht, F. E., Latifi, H., Ghosh, A., Joshi, P. K., Koch, B. 2014. Assessing the potential of hyperspectral imagery to map bark beetle-induced tree mortality. Remote Sensing of Environment, 140, 533-548.https:// doi.org/10.1016/j.rse.2013.09.014Fassnacht, F. E., Stenzel, S., Gitelson, A. A. 2015. Non-destructive estimation of foliar carotenoid content of tree species using merged vegetation indices. Journal of Plant Physiology, 176, 210-217. https://doi.org/10.1016/J.JPLPH.2014.11.003Gholizadeh, A., Mišurec, J., Kopačková, V., Mielke, C., Rogass, C. 2016. Assessment of Red-Edge Position Extraction Techniques: A Case Study for Norway Spruce Forests Using HyMap and Simulated Sentinel-2 Data. Forests, 7(226), 1-17. https://doi.org/10.3390/f7100226Guyot, G., Baret, F., Major, D. 1988. High spectral resolution: Determination of spectral shifts between the red and the near infrared. International Archives of Photogrammetry and Remote Sensing, 11(750-760).Hakkenberg, C. R., Peet, R. K., Urban, D. L., Song, C. 2018. Modeling plant composition as community continua in a forest landscape with LiDAR and hyperspectral remote sensing. Ecological Applications, 28(1), 177- 190. https://doi.org/10.1002/eap.1638Hall, M. A. 1998. Correlation-based feature subset selection for machine learning. Thesis degree of doctor, University of Waikato, New Zealand.Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C., Hobart, G. W. 2015. An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites. Remote Sensing of Environment, 158, 220-234. https://doi.org/10.1016/j.rse.2014.11.005Horler, D., Dockray, M., Barber, J. 1983. The red edge of plant leaf reflectance. International Journal of Remote Sensing, 4(2), 273-288. https://doi.org/10.1080/01431168308948546Huete, A. R. 1988. A soil-adjusted vegetation index (SAVI). Remote sensing of environment, 25(3), 295- 309. https://doi.org/10.1016/0034-4257(88)90106-XJeffrey, A. 1985. Mathematics for Engineers and Scientists. Wokingham, UK: Van Nostrand Reinhold.Kemerer, A., Mari, N., Di Bella, C., Rebella, C. 2008. Comparación de técnicas de clasificación de cultivos a partir de información Multi E Hyperespectral. Revista de Teledetección, 29, 67-72. Accesible en: http:// www.aet.org.es/revistas/revista29/Revista-AET-29-7. pdf Último acceso: 28 de noviembre, 2018.Kokaly, R., Despain, D., Clark, R., Livo, K. 2003. Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data. Remote sensing of environment, 84(3), 437-456. https://doi.org/10.1016/S0034-4257(02)00133-5Landis, J., Koch, G. 1977. The measurement of observeragreement for categorical data. Biometrics. 33, 159-174. https://doi.org/10.2307/2529310Liang S. 2005. Quantitative Remote Sensing of Land Surfaces. New Jersey, A John Wiley & Sons.Liu, L., Coops, N. C., Aven, N. W, Pang, Y. 2017. Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data. Remote Sensing of Environment, 200, 170-182. https://doi.org/10.1016/J.RSE.2017.08.010Melendo-Vega, J. R., Martín, M. P., Vilar del Hoyo, L., Pacheco-Labrador, J., Echavarría, P., Martínez-Vega, J. 2017. Estimación de variables biofísicas del pastizal en un ecosistema de dehesa a partir de espectroradiometría de campo e imágenes hiperespectrales aeroportadas. Revista de Teledetección, 48, 13-28. https://doi.org/10.4995/raet.2017.7481Ministerio del Medio Ambiente. 2008. Ficha de especie: Araucaria araucana (Molina) K. Koch. Inventario nacional de especies de Chile. http://especies. mma.gob.cl/CNMWeb/Web/WebCiudadana/ficha_ indepen.aspx?EspecieId=240&Version=1 Último acceso:20 de Mayo, 2017.Naidoo, L., Cho, M. A., Mathieu, R., Asner, G. 2012. Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment. ISPRS Journal of Photogrammetry and Remote Sensing, 69, 167-179. https://doi.org/10.1016/J.ISPRSJPRS.2012.03.005Ojeda, N., Sandoval, V., Soto, H., Casanova, J., Herrera, M., Morales, L., Espinosa, A., San Martín, J. 2011. Discriminación de bosques de Araucaria araucana en el Parque Nacional Conguillío, centro-sur de Chile, mediante datos Landsat TM. Bosque (Valdivia), 32(2), 113-125. https://doi.org/10.4067/S0717-92002011000200002Peñuelas, J., Filella, I., Biel, C., Serrano, L., Save, R. 1993. The reflectance at the 950-970 nm region as an indicator of plant water status. International journal of remote sensing, 14(10), 1887-1905. https://doi.org/10.1080/01431169308954010Premoli, A., Quiroga, P., Gardner, M. 2013. Araucaria araucana. The IUCN Red List of Threatened Species 2013: e.T31355A2805113. Último acceso: 15 de Marzo, 2017, de https://doi.org/10.2305/IUCN. UK.2013-1.RLTS.T31355A2805113.enRoig, M. 2010. Identificación y clasificación de formaciones forestales mediante imágenes hiperespectrales aéreas. Tesis Escuela de ingeniería forestal. Universidad Mayor de Chile, 76 p.Roujean, J., Breon, M. 1995. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote sensing of Environment, 51(3), 375-384. https://doi.org/10.1016/0034- 4257(94)00114-3Rouse, W., Haas, H., Schell, J., Deering, D. 1974. Monitoring vegetation systems in the great plains with ERTS. Third ERTS Symposium, NASA SP-351 I: 309-317.Shafri, H., Hamdan, N. 2009. Hyperspectral Imagery for Mapping Disease Infection in Oil Palm Plantation Using Vegetation Indices and Red Edge Techniques. American Journal of Applied Sciences, 6(6), 1031. https://doi.org/10.3844/ajassp.2009.1031.1035Shafri, H., Salleh, M., Ghiyamat, A. 2006. Hyperspectral remote sensing of vegetation using red edge position techniques. American Journal of Applied Sciences, 3(6), 1864-1871. https://doi.org/10.3844/ajassp.2006.1864.1871Shi, Y., Skidmore, A. K., Wang, T., Holzwarth, S., Heiden, U., Pinnel, N., Zhu, X., Heurich, M. 2018. Tree species classification using plant functional traits from LiDAR and hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 73, 207-219. https://doi.org/10.1016/J.JAG.2018.06.018Sims, D., Gamon, J. 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote sensing of environment, 81(2), 337-354. https://doi.org/10.1016/S0034-4257(02)00010-XSmith, K., Steven, M., Colls, J. 2004. Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks. Remote sensing of environment, 92(2), 207-217. https://doi.org/10.1016/j.rse.2004.06.002Somers, B., Verbesselt, J., Ampe, E. M., Sims, N., Verstraeten, W. W., Coppin, P. 2010. Spectral mixture analysis to monitor defoliation in mixedaged Eucalyptus globulus Labill plantations in southern Australia using Landsat5-TM and EO1Hyperion data. International Journal of Applied Earth Observation and Geoinformation, 12(4), 270- 277. https://doi.org/10.1016/J.JAG.2010.03.005Torralba, J. 2012. Generación de algoritmo para la identificación de alerce (Fitzroya cupressoides) mediante análisis de imágenes hiperespectrales en el lago Tagua-Tagua, X Región, Chile. Proyecto final de Grado en Ingeniería Forestal y del Medio Natural, Universidad Castilla-La Mancha, 95 p.Vogelmann, J., Rock, B., Moss, D. 1993. Red edge spectral measurements from sugar maple leaves. Remote sensing, 14(8), 1563-1575. https://doi. org/10.1080/01431169308953986Willis, K. 2015. Remote sensing change detection for ecological monitoring in United States protected areas. Biological Conservation, 182, 233-242. https://doi.org/10.1016/j.biocon.2014.12.006Wright, C., Gallant, A. 2007. Improved wetland remote sensing in Yellowstone National Park using classification trees to combine TM imagery and ancillary environmental data. Remote Sensing of Environment, 107(4), 582-605. https://doi.org/10.1016/j.rse.2006.10.019Zarco-Tejada, P. J., Hornero, A., Hernández-Clemente, R., Beck, P. S. A. 2018. Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2a imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 137, 134- 148. https://doi.org/10.1016/j.isprsjprs.2018.01.01

    Human viruses:discovery and emergence

    Get PDF
    There are 219 virus species that are known to be able to infect humans. The first of these to be discovered was yellow fever virus in 1901, and three to four new species are still being found every year. Extrapolation of the discovery curve suggests that there is still a substantial pool of undiscovered human virus species, although an apparent slow-down in the rate of discovery of species from different families may indicate bounds to the potential range of diversity. More than two-thirds of human viruses can also infect non-human hosts, mainly mammals, and sometimes birds. Many specialist human viruses also have mammalian or avian origins. Indeed, a substantial proportion of mammalian viruses may be capable of crossing the species barrier into humans, although only around half of these are capable of being transmitted by humans and around half again of transmitting well enough to cause major outbreaks. A few possible predictors of species jumps can be identified, including the use of phylogenetically conserved cell receptors. It seems almost inevitable that new human viruses will continue to emerge, mainly from other mammals and birds, for the foreseeable future. For this reason, an effective global surveillance system for novel viruses is needed
    corecore