219 research outputs found

    αv integrins: key regulators of tissue fibrosis

    Get PDF
    Chronic tissue injury with fibrosis results in the disruption of tissue architecture, organ dysfunction and eventual organ failure. Therefore, the development of effective anti-fibrotic therapies is urgently required. During fibrogenesis, complex interplay occurs between cellular and extracellular matrix components of the wound healing response. Integrins, a family of transmembrane cell adhesion molecules, play a key role in mediating intercellular and cell-matrix interactions. Thus, integrins provide a major node of communication between the extracellular matrix, inflammatory cells, fibroblasts and parenchymal cells and, as such, are intimately involved in the initiation, maintenance and resolution of tissue fibrosis. Modulation of members of the αv integrin family has exhibited profound effects on fibrosis in multiple organs and disease states. In this review, we discuss the current knowledge of the mechanisms of αv-integrin-mediated regulation of fibrogenesis and show that the therapeutic targeting of specific αv integrins represents a promising avenue to treat patients with a broad range of fibrotic diseases

    Mechanical Tension Increases CCN2/CTGF Expression and Proliferation in Gingival Fibroblasts via a TGFβ-Dependent Mechanism

    Get PDF
    Unlike skin, oral gingival do not scar in response to tissue injury. Fibroblasts, the cell type responsible for connective tissue repair and scarring, are exposed to mechanical tension during normal and pathological conditions including wound healing and fibrogenesis. Understanding how human gingival fibroblasts respond to mechanical tension is likely to yield valuable insights not only into gingival function but also into the molecular basis of scarless repair. CCN2/connective tissue growth factor is potently induced in fibroblasts during tissue repair and fibrogenesis. We subjected gingival fibroblasts to cyclical strain (up to 72 hours) using the Flexercell system and showed that CCN2 mRNA and protein was induced by strain. Strain caused the rapid activation of latent TGFβ, in a fashion that was reduced by blebbistatin and FAK/src inhibition, and the induction of endothelin (ET-1) mRNA and protein expression. Strain did not cause induction of α-smooth muscle actin or collagen type I mRNAs (proteins promoting scarring); but induced a cohort of pro-proliferative mRNAs and cell proliferation. Compared to dermal fibroblasts, gingival fibroblasts showed reduced ability to respond to TGFβ by inducing fibrogenic mRNAs; addition of ET-1 rescued this phenotype. Pharmacological inhibition of the TGFβ type I (ALK5) receptor, the endothelin A/B receptors and FAK/src significantly reduced the induction of CCN2 and pro-proliferative mRNAs and cell proliferation. Controlling TGFβ, ET-1 and FAK/src activity may be useful in controlling responses to mechanical strain in the gingiva and may be of value in controlling fibroproliferative conditions such as gingival hyperplasia; controlling ET-1 may be of benefit in controlling scarring in response to injury in the skin

    Remodeling of extracellular matrix by normal and tumor-associated fibroblasts promotes cervical cancer progression

    Get PDF
    Background: Comparison of tissue microarray results of 29 cervical cancer and 27 normal cervix tissue samples using immunohistochemistry revealed considerable reorganization of the fibrillar stroma of these tumors. Preliminary densitometry analysis of laminin-1, α -smooth muscle actin (SMA) and fibronectin immunostaining demonstrated 3.8-fold upregulation of laminin-1 and 5.2-fold increase of SMA in the interstitial stroma, indicating that these proteins and the activated fibroblasts play important role in the pathogenesis of cervical cancer. In the present work we investigated the role of normal and tumor-associated fibroblasts. Methods: In vitro models were used to throw light on the multifactorial process of tumor-stroma interaction, by means of studying the cooperation between tumor cells and fibroblasts. Fibroblasts from normal cervix and cervical cancers were grown either separately or in co-culture with CSCC7 cervical cancer cell line. Changes manifest in secreted glycoproteins, integrins and matrix metallo-proteases (MMPs) were explored. Results: While normal fibroblasts produced components of interstitial matrix and TGF- β 1 that promoted cell proliferation, cancer-associated fibroblasts (CAFs) synthesized ample amounts of laminin-1. The following results support the significance of laminin-1 in the invasion of CSCC7 cells: 1.) Tumor-associated fibroblasts produced more laminin-1 and less components of fibrillar ECM than normal cells; 2.) The production of laminin chains was further increased when CSCC7 cells were grown in co-culture with fibroblasts; 3.) CSCC7 cells were capable of increasing their laminin production; 4.) Tumor cells predominantly expressed integrin α 6 β 4 laminin receptors and migrated towards laminin. The integrin profile of both normal and tumor-associated fibroblasts was similar, expressing receptors for fibronectin, vitronectin and osteopontin. MMP-7 secreted by CSCC7 cells was upregulated by the presence of normal fibroblasts, whereas MMP-2 produced mainly by fibroblasts was activated in the presence of CSCC7 cells. Conclusions: Our results indicate that in addition to degradation of the basement membrane, invasion of cervical cancer is accomplished by the remodeling of the interstitial stroma, which process includes decrease and partial replacement of fibronectin and collagens by a laminin-rich matrix

    Cancer Cell Invasion Is Enhanced by Applied Mechanical Stimulation

    Get PDF
    Metastatic cells migrate from the site of the primary tumor, through the stroma, into the blood and lymphatic vessels, finally colonizing various other tissues to form secondary tumors. Numerous studies have been done to identify the stimuli that drive the metastatic cascade. This has led to the identification of multiple biochemical signals that promote metastasis. However, information on the role of mechanical factors in cancer metastasis has been limited to the affect of compliance. Interestingly, the tumor microenvironment is rich in many cell types including highly contractile cells that are responsible for extensive remodeling and production of the dense extracellular matrix surrounding the cancerous tissue. We hypothesize that the mechanical forces produced by remodeling activities of cells in the tumor microenvironment contribute to the invasion efficiency of metastatic cells. We have discovered a significant difference in the extent of invasion in mechanically stimulated verses non-stimulated cell culture environments. Furthermore, this mechanically enhanced invasion is dependent upon substrate protein composition, and influenced by topography. Finally, we have found that the protein cofilin is needed to sense the mechanical stimuli that enhances invasion. We conclude that other types of mechanical signals in the tumor microenvironment, besides the rigidity, can enhance the invasive abilities of cancer cells in vitro. We further propose that in vivo, non-cancerous cells located within the tumor micro-environment may be capable of providing the necessary mechanical stimulus during the remodeling of the extracellular matrix surrounding the tumor

    Matrix Rigidity Induces Osteolytic Gene Expression of Metastatic Breast Cancer Cells

    Get PDF
    Nearly 70% of breast cancer patients with advanced disease will develop bone metastases. Once established in bone, tumor cells produce factors that cause changes in normal bone remodeling, such as parathyroid hormone-related protein (PTHrP). While enhanced expression of PTHrP is known to stimulate osteoclasts to resorb bone, the environmental factors driving tumor cells to express PTHrP in the early stages of development of metastatic bone disease are unknown. In this study, we have shown that tumor cells known to metastasize to bone respond to 2D substrates with rigidities comparable to that of the bone microenvironment by increasing expression and production of PTHrP. The cellular response is regulated by Rho-dependent actomyosin contractility mediated by TGF-ß signaling. Inhibition of Rho-associated kinase (ROCK) using both pharmacological and genetic approaches decreased PTHrP expression. Furthermore, cells expressing a dominant negative form of the TGF-ß receptor did not respond to substrate rigidity, and inhibition of ROCK decreased PTHrP expression induced by exogenous TGF-ß. These observations suggest a role for the differential rigidity of the mineralized bone microenvironment in early stages of tumor-induced osteolysis, which is especially important in metastatic cancer since many cancers (such as those of the breast and lung) preferentially metastasize to bone

    Fibrotic Myofibroblasts Manifest Genome-Wide Derangements of Translational Control

    Get PDF
    Background: As a group, fibroproliferative disorders of the lung, liver, kidney, heart, vasculature and integument are common, progressive and refractory to therapy. They can emerge following toxic insults, but are frequently idiopathic. Their enigmatic propensity to resist therapy and progress to organ failure has focused attention on the myofibroblast–the primary effector of the fibroproliferative response. We have recently shown that aberrant beta 1 integrin signaling in fibrotic fibroblasts results in defective PTEN function, unrestrained Akt signaling and subsequent activation of the translation initiation machinery. How this pathological integrin signaling alters the gene expression pathway has not been elucidated. Results: Using a systems approach to study this question in a prototype fibrotic disease, Idiopathic Pulmonary Fibrosis (IPF); here we show organized changes in the gene expression pathway of primary lung myofibroblasts that persist for up to 9 sub-cultivations in vitro. When comparing IPF and control myofibroblasts in a 3-dimensional type I collagen matrix, more genes differed at the level of ribosome recruitment than at the level of transcript abundance, indicating pathological translational control as a major characteristic of IPF myofibroblasts. To determine the effect of matrix state on translational control, myofibroblasts were permitted to contract the matrix. Ribosome recruitment in control myofibroblasts was relatively stable. In contrast, IPF cells manifested large alterations in the ribosome recruitment pattern. Pathological studies suggest an epithelial origin for IPF myofibroblasts through the epithelial to mesenchymal transition (EMT). In accord wit

    Regulation of fibroblast Fas expression by soluble and mechanical pro-fibrotic stimuli

    Full text link
    Abstract Background Fibroblast apoptosis is a critical component of normal repair and the acquisition of an apoptosis-resistant phenotype contributes to the pathogenesis of fibrotic repair. Fibroblasts from fibrotic lungs of humans and mice demonstrate resistance to apoptosis induced by Fas-ligand and prior studies have shown that susceptibility to apoptosis is enhanced when Fas (CD95) expression is increased in these cells. Moreover, prior work shows that Fas expression in fibrotic lung fibroblasts is reduced by epigenetic silencing of the Fas promoter. However, the mechanisms by which microenvironmental stimuli such as TGF-β1 and substrate stiffness affect fibroblast Fas expression are not well understood. Methods Primary normal human lung fibroblasts (IMR-90) were cultured on tissue culture plastic or on polyacrylamide hydrogels with Young’s moduli to recapitulate the compliance of normal (400 Pa) or fibrotic (6400 Pa) lung tissue and treated with or without TGF-β1 (10 ng/mL) in the presence or absence of protein kinase inhibitors and/or inflammatory cytokines. Expression of Fas was assessed by quantitative real time RT-PCR, ELISA and Western blotting. Soluble Fas (sFas) was measured in conditioned media by ELISA. Apoptosis was assessed using the Cell Death Detection Kit and by Western blotting for cleaved PARP. Results Fas expression and susceptibility to apoptosis was diminished in fibroblasts cultured on 6400 Pa substrates compared to 400 Pa substrates. TGF-β1 reduced Fas mRNA and protein in a time- and dose-dependent manner dependent on focal adhesion kinase (FAK). Surprisingly, TGF-β1 did not significantly alter cell-surface Fas expression, but did stimulate secretion of sFas. Finally, enhanced Fas expression and increased susceptibility to apoptosis was induced by combined treatment with TNF-α/IFN-γ and was not inhibited by TGF-β1. Conclusions Soluble and matrix-mediated pro-fibrotic stimuli promote fibroblast resistance to apoptosis by decreasing Fas transcription while stimulating soluble Fas secretion. These findings suggest that distinct mechanisms regulating Fas expression in fibroblasts may serve different functions in the complex temporal and spatial evolution of normal and fibrotic wound-repair responses.https://deepblue.lib.umich.edu/bitstream/2027.42/143539/1/12931_2018_Article_801.pd

    A theoretical model of inflammation- and mechanotransduction- driven asthmatic airway remodelling

    Get PDF
    Inflammation, airway hyper-responsiveness and airway remodelling are well-established hallmarks of asthma, but their inter-relationships remain elusive. In order to obtain a better understanding of their inter-dependence, we develop a mechanochemical morphoelastic model of the airway wall accounting for local volume changes in airway smooth muscle (ASM) and extracellular matrix in response to transient inflammatory or contractile agonist challenges. We use constrained mixture theory, together with a multiplicative decomposition of growth from the elastic deformation, to model the airway wall as a nonlinear fibre-reinforced elastic cylinder. Local contractile agonist drives ASM cell contraction, generating mechanical stresses in the tissue that drive further release of mitogenic mediators and contractile agonists via underlying mechanotransductive signalling pathways. Our model predictions are consistent with previously described inflammation-induced remodelling within an axisymmetric airway geometry. Additionally, our simulations reveal novel mechanotransductive feedback by which hyper-responsive airways exhibit increased remodelling, for example, via stress-induced release of pro-mitogenic and procontractile cytokines. Simulation results also reveal emergence of a persistent contractile tone observed in asthmatics, via either a pathological mechanotransductive feedback loop, a failure to clear agonists from the tissue, or a combination of both. Furthermore, we identify various parameter combinations that may contribute to the existence of different asthma phenotypes, and we illustrate a combination of factors which may predispose severe asthmatics to fatal bronchospasms
    • …
    corecore