9,524 research outputs found

    GRASP: A New Search Algorithm for Satisfiability

    No full text
    This paper introduces GRASP (Generic search Algorithm J3r the Satisfiabilily Problem), an integrated algorithmic J3amework 30r SAT that unifies several previously proposed searchpruning techniques and jcilitates identification of additional ones. GRASP is premised on the inevitability of conflicts during search and its most distinguishingjature is the augmentation of basic backtracking search with a powerful conflict analysis procedure. Analyzing conflicts to determine their causes enables GRASP to backtrack non-chronologically to earlier levels in the search tree, potentially pruning large portions of the search space. In addition, by 'ecording" the causes of conflicts, GRASP can recognize and preempt the occurrence of similar conflicts later on in the search. Einally, straighrward bookkeeping of the causali y chains leading up to conflicts a/lows GRASP to identij) assignments that are necessary jr a solution to be found. Experimental results obtained jom a large number of benchmarks, including many J3om the field of test pattern generation, indicate that application of the proposed conflict analysis techniques to SAT algorithms can be extremely ejctive jr a large number of representative classes of SAT instances

    Boolean Satisfiability in Electronic Design Automation

    No full text
    Boolean Satisfiability (SAT) is often used as the underlying model for a significant and increasing number of applications in Electronic Design Automation (EDA) as well as in many other fields of Computer Science and Engineering. In recent years, new and efficient algorithms for SAT have been developed, allowing much larger problem instances to be solved. SAT “packages” are currently expected to have an impact on EDA applications similar to that of BDD packages since their introduction more than a decade ago. This tutorial paper is aimed at introducing the EDA professional to the Boolean satisfiability problem. Specifically, we highlight the use of SAT models to formulate a number of EDA problems in such diverse areas as test pattern generation, circuit delay computation, logic optimization, combinational equivalence checking, bounded model checking and functional test vector generation, among others. In addition, we provide an overview of the algorithmic techniques commonly used for solving SAT, including those that have seen widespread use in specific EDA applications. We categorize these algorithmic techniques, indicating which have been shown to be best suited for which tasks

    Video browsing interfaces and applications: a review

    Get PDF
    We present a comprehensive review of the state of the art in video browsing and retrieval systems, with special emphasis on interfaces and applications. There has been a significant increase in activity (e.g., storage, retrieval, and sharing) employing video data in the past decade, both for personal and professional use. The ever-growing amount of video content available for human consumption and the inherent characteristics of video data—which, if presented in its raw format, is rather unwieldy and costly—have become driving forces for the development of more effective solutions to present video contents and allow rich user interaction. As a result, there are many contemporary research efforts toward developing better video browsing solutions, which we summarize. We review more than 40 different video browsing and retrieval interfaces and classify them into three groups: applications that use video-player-like interaction, video retrieval applications, and browsing solutions based on video surrogates. For each category, we present a summary of existing work, highlight the technical aspects of each solution, and compare them against each other

    Renormalization of Optical Excitations in Molecules near a Metal Surface

    Full text link
    The lowest electronic excitations of benzene and a set of donor-acceptor molecular complexes are calculated for the gas phase and on the Al(111) surface using the many-body Bethe-Salpeter equation (BSE). The energy of the charge-transfer excitations obtained for the gas phase complexes are found to be around 10% lower than the experimental values. When the molecules are placed outside the surface, the enhanced screening from the metal reduces the exciton binding energies by several eVs and the transition energies by up to 1 eV depending on the size of the transition-generated dipole. As a striking consequence we find that close to the metal surface the optical gap of benzene can exceed its quasiparticle gap. A classical image charge model for the screened Coulomb interaction can account for all these effects which, on the other hand, are completely missed by standard time-dependent density functional theory.Comment: 4 pages, 3 figures; revised versio

    Riemann-Langevin Particle Filtering in Track-Before-Detect

    Get PDF
    Track-before-detect (TBD) is a powerful approach that consists in providing the tracker with sensor measurements directly without pre-detection. Due to the measurement model non-linearities, online state estimation in TBD is most commonly solved via particle filtering. Existing particle filters for TBD do not incorporate measurement information in their proposal distribution. The Langevin Monte Carlo (LMC) is a sampling method whose proposal is able to exploit all available knowledge of the posterior (that is, both prior and measurement information). This letter synthesizes recent advances in LMC-based filtering to describe the Riemann-Langevin particle filter and introduces its novel application to TBD. The benefits of our approach are illustrated in a challenging low-noise scenario.Comment: Minor grammatical update

    Seismic diagnostics for transport of angular momentum in stars 2. Interpreting observed rotational splittings of slowly-rotating red giant stars

    Full text link
    Asteroseismology with the space-borne missions CoRoT and Kepler provides a powerful mean of testing the modeling of transport processes in stars. Rotational splittings are currently measured for a large number of red giant stars and can provide stringent constraints on the rotation profiles. The aim of this paper is to obtain a theoretical framework for understanding the properties of the observed rotational splittings of red giant stars with slowly rotating cores. This allows us to establish appropriate seismic diagnostics for rotation of these evolved stars. Rotational splittings for stochastically excited dipolar modes are computed adopting a first-order perturbative approach for two 1.3M1.3 M_\odot benchmark models assuming slowly rotating cores. For red giant stars with slowly rotating cores, we show that the variation of the rotational splittings of =1\ell=1 modes with frequency depends only on the large frequency separation, the g-mode period spacing, and the ratio of the average envelope to core rotation rates (R{\cal R}). This leds us to propose a way to infer directly R{\cal R} from the observations. This method is validated using the Kepler red giant star KIC 5356201. Finally, we provide a theoretical support for the use of a Lorentzian profile to measure the observed splittings for red giant stars.Comment: 15 pages, 15 figures, accepted for publication in A&

    On a generalized gravitational Aharonov-Bohm effect

    Get PDF
    A massless spinor particle is considered in the background gravitational field due to a rotating body. In the weak field approximation it is shown that the solution of the Weyl equations depend on the angular momentum of the rotating body, which does not affect the curvature in this approximation. This result may be looked upon as a generalization of the gravitational Aharonov-Bohm effect.Comment: 10 pages, LATEX fil
    corecore