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Riemann-Langevin Particle Filtering
in Track-Before-Detect

Fernando J. Iglesias-Garcia, Pranab K. Mandal, Mélanie Bocquel, Antonio G. Marques

Abstract—Track-before-detect (TBD) is a powerful approach
that consists in providing the tracker directly with the sensor
measurements without any pre-detection. Due to the measure-
ment model non-linearities, online state estimation in TBD is
most commonly solved via particle filtering. Existing particle
filters for TBD do not incorporate measurement information in
their proposal distribution. The Langevin Monte Carlo (LMC)
is a sampling method whose proposal is able to exploit all
available knowledge of the posterior (that is, both prior and mea-
surement information). This letter synthesizes recent advances
in differential-geometric LMC-based filtering to introduce its
application to TBD. The benefits of LMC filtering in TBD are
illustrated in a challenging low-noise scenario.

Index Terms—particle filter, Langevin Monte Carlo, track-
before-detect (TBD).

I. INTRODUCTION

SEQUENTIAL STATE estimation in nonlinear dynamical
systems, such as tracking, is a challenging problem.

Following a Bayesian approach, a closed-form expression of
the posterior probability of the state is only attainable for
a restricted class of models. Therefore, methods based on
numerical approximations are oftentimes employed. Among
these, Monte Carlo (MC) methods [1]–[3] are popular due to
their flexibility and provable convergence guarantees. Particle
filters (PFs) based on importance sampling (IS) are a straight-
forward implementation of MC methods in dynamical systems.
However, their practical application is quickly challenged as
the dimension of the state space increases. Moreover, IS-based
PFs usually require resampling to avoid degeneracy, restrain-
ing their parallel implementation. Due to these limitations,
the integration of Markov chain Monte Carlo (MCMC) in PF
emerged as a competing alternative [4]–[7].

The main goal of this letter is to investigate the application
of sequential differential-geometric MCMC-based PF to the
problem of track-before-detect (TBD) [8]–[10]. In classical
surveillance and tracking, the raw (video) data is preprocessed
with a detection module and then, if necessary, passed on
to the actual tracking module. As a result, if a dim object
is not detected, it is also not tracked. On the other hand,
TBD removes the detection stage and feeds the “unthresh-
olded” image measurements directly into the tracker. In other
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words, TBD performs simultaneous detection and tracking
by integrating measurements over time and position, thereby
allowing for higher detection probability of dim objects. Due
to the non-linearities in TBD measurement models, PFs are
commonly employed. Nevertheless, the proposal distributions
in PFs (based on either MCMC or IS) developed for TBD
have solely exploited the prior.This is, in general, inefficient
and especially so, when the measurement noise is low, or
equivalently, most of the posterior information is contained in
the measurement. An MCMC based PF called the Langevin
Monte Carlo (LMC) filter has been recently applied in the
context of classical tracking [11]. The MCMC proposal of this
filter exploits measurement knowledge through the Langevin
equation [12]. One of the limitations of this LMC-PF is that
it is parametrized by a step size that must be adjusted for
every time step. Another drawback of the algorithm is that it
approximates the gradient of the posterior and uses an MCMC-
based PF methodology that introduces a bias [13]. The first
limitation can be removed by using a differential-geometric
Langevin proposal [14] and the second can be avoided by
using a sequential MCMC approach [6]. A family of sequential
MCMC filters leveraging differential geometry in the proposal
has been more recently presented in [15], where the authors
compared the performance of the filters in solving general
filtering problems involving high-dimensional state vectors.

Through this letter we want to show that the TBD commu-
nity can also benefit from the sequential MCMC based on a
differential-geometric proposal, such as the Riemann-Langevin
Monte Carlo (RLMC) filter. We would like to emphasize that
the goal of the letter is not to compare all the different MC
techniques there are. It is rather to show that in the TBD
context an RLMC filter improves the tracking performance
considerably, when compared with the other commonly used
techniques. We do this by applying an RLMC filter, that is
called the simplified sequential manifold Metropolis-adjusted
Langevin algorithm (simplified SmMALA) algorithm in [15],
to a TBD scenario with low measurement noise.

The rest of the letter is organized as follows. Section II
reviews briefly the fundamentals of sequential MCMC and the
Riemann-Langevin MC filter. We particularize in Section III
the RLMC filter to our main focus area, TBD. The TBD
model is described in Section III-A and the Riemann-Langevin
proposal is explicitly derived in Section III-B. Using a low-
noise TBD scenario as our testbed, we compare the perfor-
mance of the RLMC filter to other existing methods. These
numerical results are presented in Section IV. The conclusions
in Section V close the letter.
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II. PRELIMINARIES

In this section we briefly review why sequential MCMC
[6] renders an efficient MCMC-based PF (Section II-A) and
present the sequential RLMC filter (Section II-B) that we will
implement. First, though, we introduce the basic notations used
throughout the article.

Let sk and zk be the state and measurement vectors,
respectively, at time step k, with the state transition density
p(sk|sk−1) and the measurement likelihood p(zk|sk). Given
the sequence of measurements {z1, . . . , zk} ≡ z1:k, we denote
the Bayesian posterior by p(sk|z1:k) and the prediction density
by p(sk|z1:k−1).

A. Sequential MCMC

Recall that in MCMC-based particle filtering, after obtaining
the new observation at each time step k, a Markov chain
generates samples from the posterior. In the Markov chain,
given the current state of the chain, sik, a new sample s∗k is
drawn from a proposal distribution q(·|sik). Subsequently, an
acceptance/rejection test is performed where the acceptance
probability A according to the Metropolis-Hastings algorithm
is given by

A
(
sik, s

∗
k

)
= min

{
1,

p(zk|s∗k)p(s∗k |z1:k−1)

p(zk|sik)p(sik|z1:k−1)

q
(
sik|s∗k

)
q
(
s∗k |sik

)} . (1)

Clearly, unless the proposal is equal to the prediction density
p(sk|z1:k−1), the computation of A will require the evaluation
of the latter, which is usually computationally expensive.

The sequential MCMC brings flexibility in choosing the
proposal while maintaining efficient computation of the accep-
tance probability. The key is to first make, within one time-
step of the Markov chain, a joint draw of the states at k and
k−1 from the joint posterior p(sk, sk−1|z1:k) and then perform
a refinement draw of sk to obtain samples from the required
posterior p(sk|z1:k). An exploitation of the factorization of the
joint density,

p(sk, sk−1|z1:k) ∝ p(zk|sk)p(sk|sk−1)p(sk−1|z1:k−1), (2)

leads to more amenable acceptance probability calculations. In
the joint stage, it only involves likelihoods. In the refinement
stage, given a joint sample (s†k, s

†
k−1), a new sample s∗k from

the proposal q(·|s†k, s
†
k−1) is accepted with probability

min

1,
p(zk|s∗k)p(s∗k |s

†
k−1)

p(zk|s†k)p(s†k|s
†
k−1)

q
(
s†k|s∗k , s

†
k−1

)
q
(
s∗k |s

†
k, s
†
k−1

)
 , (3)

which involves the readily available transition density.

B. Sequential Riemann-Langevin Monte Carlo filter

Let us now summarize a sequential MCMC filter that
uses the Riemannian manifold Langevin proposal qRL in the
refinement stage. This method is called simplified SmMALA in
[15]. The exact form of the proposal (qRL) will be presented
in Section III-B, in the context of TBD. This proposal enables
us to efficiently sample from the high-density regions of the
state space leveraging the measurements.

Algorithm 1 describes the filter. The algorithm has an outer-
most loop in k corresponding to the filtering time. The loop
in i represents the evolution of the Markov chain in the
MCMC. Regarding the rest of the symbols introduced in
Algorithm 1: p̂ denotes the sample-based representation of a
density; ∼ denotes the action of sampling from a distribution,
e.g. u ∼ Unif(0, 1) means that u is drawn from a continuous
uniform [0, 1]; Nbi denotes the burn-in length; and Np the
number of particles.

Input : p̂ (s0), p(zk|sk), p(sk|sk−1), z1:K
Output: {p̂ (sk|z1:k)}k=1,...,K

1 for k = 1 to K do
2 (sk, sk−1)

0 ∼ p(sk|sk−1)p̂ (sk−1|z1:k−1);
3 for i = 0 to Nbi + Np − 1 do

// Joint draw.
4 (sk, sk−1)

∗ ∼ p(sk|sk−1)p̂ (sk−1|z1:k−1);

5 A
(
sik, s

∗
k

)
= min

{
1,

p(zk|s∗k )
p(zk|sik)

}
;

6 u ∼ Unif (0, 1);
7 if u < A

(
sik, s

∗
k

)
then

8 (sk, sk−1)
i+1

= (sk, sk−1)
∗;

9 else
10 (sk, sk−1)

i+1
= (sk, sk−1)

i;
11 end

// Refinement.
12 s∗k ∼ qRL

(
sk|si+1

k , si+1
k−1, zk

)
;

13 A
(
si+1

k , s∗k
)

=

min

{
1,

p(zk|s∗k )p(s∗k |s
i+1
k−1)

p(zk|si+1
k )p(si+1

k |si+1
k−1)

qRL(s
i+1
k |s∗k ,s

i+1
k−1,zk)

qRL(s∗k |s
i+1
k ,si+1

k−1,zk)

}
;

14 u ∼ Unif (0, 1);
15 if u < A

(
si+1

k , s∗k
)

then
16 si+1

k = s∗k ;
17 end
18 end
19 p̂ (sk|z1:k) = N−1p

∑Nbi+Np
i=Nbi+1 δ

(
sk − sik

)
;

20 end
Algorithm 1: Riemann-Langevin MC filter.

III. RIEMANN-LANGEVIN PROPOSAL IN
TRACK-BEFORE-DETECT

In this section we introduce the TBD model and derive the
necessary equations to provide the exact form of the Riemann-
Langevin proposal qRL.

A. Track-before-detect measurement model

Recall that in TBD the tracker processes raw measurements.
We consider the measurement model from [9], where an
imaging sensor (e.g. camera, radar) measures the vector zk

composed of the scalars z(j)k in J pixels or cells:

zk = [z(1)k · · · z(J)
k ]T. (4)

The strength of the measured signal under the influence of an
object with state-vector s is assumed to be constant, denoted
by A. Furthermore, we assume that the cell-measurement
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Fig. 1. Range-bearing imaging sensor grid, measurement, and object tra-
jectory (dotted line) illustrating the TBD model. The solid lines depict the
boundaries of the cells. The colors of the cells denote the measurements (5).

noises w(j)
k ’s are independent over the cells and are additive

Gaussian with zero-mean and variance σ2
w, so that the signal-

to-noise ratio (SNR) is 20 log10 (A/σw). Then, the measure-
ment in a single cell is given by

z(j)k = ẑ(j)k + w
(j)
k = A h(j)(sk) + w

(j)
k , (5)

where h(j) is the point spread function characteristic of the
sensor. A common choice for the point spread function [9],
which we also use for the experiments in Section IV, is

h(j)(sk) = exp

(
− (rj − r(sk))2

2R
− (bj − b(sk))2

2B

)
, (6)

where rj and bj denote, respectively, the range and bearing cell
centroids; r(sk) and b(sk) the position in polar coordinates;
and R and B are sensing parameters that depend on the res-
olution and the boundaries of the surveillance area [9]. Other
measurement dimensions (e.g. Doppler velocity, elevation) can
be included in the point spread function depending on the type
of imaging sensor. For illustration, Figure 1 shows a sensor
grid and measurement following this model.

B. Riemann-Langevin proposal

The Riemann-Langevin proposal is used to draw the refined
sample s′k, given the current joint sample (sk, sk−1). The
general form of the proposal [15] is given by eqn. (12) at
the bottom of this page. In the equation, ∇x f(x) denotes the
gradient-vector of f w.r.t. x and F is a metric tensor repre-
senting the Fisher information matrix [16]. In the sequential
MCMC context, F becomes [15, eqn. (46)]:

F(sk, sk−1, zk) = −Ezk|sk

[
∆sk

sk
log (p(zk|sk)p(sk|sk−1))

]
= −Ezk|sk

[
∆sk

sk
log p(zk|sk)

]
−∆sk

sk
log p(sk|sk−1) (7)

where Ezk|sk denotes the expected value w.r.t. p(zk|sk) and
∆x

x f(x) the Hessian of f w.r.t. x.
Similarly, the gradient in (12) can be written as:

∇sk log (p(zk|sk)p(sk|sk−1))

= ∇sk log p(zk|sk) +∇sk log p(sk|sk−1). (8)

We derive below the first terms in the right hand side of
(8) and (7), involving the likelihood p(zk|sk). The quantities
corresponding to the state transition density can be obtained
using the exact state-evolution model (see Section IV-A).

Note that the independence of the measurement noises over
the cells leads to further simplification of the log-likelihood:

log p(zk|sk) =

J∑
j=1

log p(z(j)k |sk). (9)

According to (5), the cell-likelihood p(z(j)k |sk) ∼ N (ẑ(j), σ2
w).

Then, denoting F (sk, zk) := −Ezk|sk

[
∆sk

sk
log p(zk|sk)

]
, it fol-

lows (see, e.g., [17]) that

∇sk log p(zk|sk) =

J∑
j=1

1

σ2
w

(
∂ẑ(j)k

∂sk

)T

(z(j)k − ẑ(j)k ), (10)

F (sk, zk) =

J∑
j=1

1

σ2
w

(
∂ẑ(j)k

∂sk

)T(
∂ẑ(j)k

∂sk

)
. (11)

IV. NUMERICAL RESULTS

In this section, we describe the state evolution model and
compare the performance of the Riemann-Langevin MC filter
to the traditional bootstrap PF [1] and the standard sequential
MCMC in a TBD application.

The reader may wonder about the choice of the RLMC
filter (the SmMALA), instead of, for example, the Sequential
manifold Hamiltonian Monte Carlo (SmHMC), which is also
presented in [15] and outperforms the SmMALA in high
dimensions. However, as we shall see below, we consider
a 4-dimensional state-vector, and the experimental results in
[14] and [15] show that the Langevin is generally more
efficient than the Hamiltonian in low-dimensional state spaces
(compare, e.g., Tables 3-7 with Table 10 in [14], or see [15,
Table IV]).

A. Motion model

The scenario we consider is composed of a single object,
moving along a straight-line at a constant speed of 180
kilometers per hour. The object trajectory lasts 30 seconds
and is shown in Figure 1. Range and bearing measurements
are reported by an imaging sensor every second (i.e., sampling
time ∆t = 1[s]).

Thus the state vector is comprised of two-dimensional
position (denoted by x and y) and the corresponding ve-
locities: sk =

[
xk ẋk yk ẏk

]T
. The state evolution

qRL (s′k|sk, sk−1, zk) = N
(
s′k; sk +

ε2

2
F−1 (sk, sk−1, zk)∇sk log (p(zk|sk) p(sk|sk−1)) , ε2F−1 (sk, sk−1, zk)

)
. (12)
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TABLE I
SENSOR PARAMETERS

Range PSF constant (R) 1.56 · 106 [m2]
Bearing PSF constant (B) 1.88 · 10−4 [rad2]

Range resolution 500 [m]
Bearing resolution 5 · 10−3 [rad]
Range lower bound 22 · 103 [m]
Range upper bound 26 · 103 [m]

Bearing lower bound −π/6 [rad]
Bearing upper bound π/6 [rad]

over time is given by a nearly constant velocity model [18]
sk = A sk−1 + vk−1, with transition matrix

A = I2 ⊗
[
1 ∆t

0 1

]
(13)

where ⊗ denotes the Kronecker product. The noise vk is
Gaussian with zero mean and covariance

Q =

[
σ2
ax

0
0 σ2

ay

]
⊗
[
∆3

t/3 ∆2
t/2

∆2
t/2 ∆t

]
, (14)

where σax = σay = 0.1 [m s−2] denote scalar standard devi-
ations of the acceleration along the x and y axes, respectively.

With the Gaussian transition density, the quantities in (8)
and (7), involving the state transition density and required for
the RLMC proposal, can be obtained easily as:

∇sk log p(sk|sk−1) = − Q−1 (sk − A sk−1) (15)

∆sk
sk

log p(sk|sk−1) = − Q−1. (16)

B. Measurement model and sensor parameters

The TBD measurement model is described in Section III-A.
The specification of the parameters follows. The measurement
noise is σw = 10−4 and the SNR = 80 [dB], simulating a
very low-noise scenario especially challenging for PF. The
sensor parameters are listed in Table I. Figure 1 depicts the
sensor grid in a region of the field-of-view as well as a sample
measurement.

C. Compared methods and initialization

We compare the following methods:
1) The Riemann-Langevin MC filter.
2) The bootstrap PF based on IS and resampling.
3) Sequential MCMC with prior proposal.
The Riemann-Langevin MC filter uses 400 particles, the

bootstrap PF 5000, and the sequential MCMC with prior
proposal 3000. For both MCMC methods the burn-in length is
100. Initial particles are drawn from two uniform distributions:
for the position the area of the distribution is 1 [km2]; and for
the velocity it is 100 [m2 s−2]. Both distributions are centered
around the ground truth.

D. Simulation results

The root mean squared error (RMSE) of the position estimate
(x and y axes) is shown in Figure 2. Results are obtained aver-
aging NMC = 50 MC simulations. In all methods the estimated
positions are given by the sample average over the population

Time step
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Fig. 2. Root mean squared error (RMSE) in the position state variables
obtained with each of the methods in comparison.

of particles (burn-in is discarded in the MCMC methods). The
results show that the Riemann-Langevin MC filter outperforms
the other methods despite its lower number of samples. Note
that during the first few time steps the low performance of
the Riemann-Langevin MC filter is due to its fewer number
of particles. The superior overall performance stems from the
Riemann-Langevin proposal, which leverages both prior and
measurement information, whereas the proposals in the other
methods only contain prior information.

In particular, the particle clouds in the Riemann-Langevin
MC filter are diverse, whereas the particle clouds in the other
methods are degenerated due to the low noise. The Riemann-
Langevin proposal achieves diverse clouds via adaptation, fo-
cusing on the regions of the state space where most mass of the
posterior density lies. A measure of the particles’ degeneration
(which is opposite to their dispersion) with straightforward
interpretation is the number of distinct particles. Across all
the MC runs, the minimum and maximum number of distinct
particles at the last time step are: 363 and 384 (of 400 total)
in the Riemann-Langevin MC filter; 4 and 8 (of 5000) in the
bootstrap PF; 4 and 11 (of 3000) in the sequential MCMC
with prior proposal.

V. CONCLUSION

This letter presented the application of a sequential
differential-geometric MCMC-based PF to the problem of
TBD. We derived the expressions for the gradient and the
Fisher information matrix of the TBD measurement model to
obtain the TBD Riemann-Langevin proposal. An experiment
dealing with low-noise, a setup particularly challenging for PF,
illustrated that the Riemann-Langevin MC filter outperformed
the considered alternatives.
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